Unlocking the potential of remote sensing for arsenic contamination detection and management: Challenges and perspectives

IF 6.7 Q1 ENVIRONMENTAL SCIENCES
Vivek Agarwal , Manish Kumar , Durga Prasad Panday , Jian Zang , Francisco Munoz-Arriola
{"title":"Unlocking the potential of remote sensing for arsenic contamination detection and management: Challenges and perspectives","authors":"Vivek Agarwal ,&nbsp;Manish Kumar ,&nbsp;Durga Prasad Panday ,&nbsp;Jian Zang ,&nbsp;Francisco Munoz-Arriola","doi":"10.1016/j.coesh.2024.100578","DOIUrl":null,"url":null,"abstract":"<div><p>This work explores the current status of remote sensing (RS) applications for managing global arsenic (As) pollution in water, impacting health and ecosystems. We detailed the complex, indirect relationship between remote sensing and arsenic contamination detection. Satellite imagery from Landsat, Sentinel, and Hyperion satellites are notably effective in identifying As minerals, providing a proxy for groundwater As pollution. These methods can be further enhanced by integrating GRACE satellite data on groundwater fluctuations, land use maps, and machine learning. Despite these advances in the RS technologies, challenges of data accuracy, interpretations, and ground-truthing are likely to persist. This work also adds to the narrative and the perspective of AI applications in environmental data improvement, diagnostics and prognostics for groundwater, and that further understanding of environmental complexity is needed to boost innovation in mitigating and democratizing As-related challenges.</p></div>","PeriodicalId":52296,"journal":{"name":"Current Opinion in Environmental Science and Health","volume":"42 ","pages":"Article 100578"},"PeriodicalIF":6.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468584424000485/pdfft?md5=68d2af7bacef36ef647c9d35d8d7acdf&pid=1-s2.0-S2468584424000485-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Environmental Science and Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468584424000485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This work explores the current status of remote sensing (RS) applications for managing global arsenic (As) pollution in water, impacting health and ecosystems. We detailed the complex, indirect relationship between remote sensing and arsenic contamination detection. Satellite imagery from Landsat, Sentinel, and Hyperion satellites are notably effective in identifying As minerals, providing a proxy for groundwater As pollution. These methods can be further enhanced by integrating GRACE satellite data on groundwater fluctuations, land use maps, and machine learning. Despite these advances in the RS technologies, challenges of data accuracy, interpretations, and ground-truthing are likely to persist. This work also adds to the narrative and the perspective of AI applications in environmental data improvement, diagnostics and prognostics for groundwater, and that further understanding of environmental complexity is needed to boost innovation in mitigating and democratizing As-related challenges.

Abstract Image

释放遥感在砷污染检测和管理方面的潜力:挑战与展望
这项工作探讨了遥感(RS)应用于管理全球砷(As)污染的现状,以及对健康和生态系统的影响。我们详细阐述了遥感与砷污染检测之间复杂而间接的关系。来自 Landsat、Sentinel 和 Hyperion 卫星的卫星图像可有效识别砷矿物,为地下水砷污染提供替代物。通过整合有关地下水波动的 GRACE 卫星数据、土地利用图和机器学习,可以进一步增强这些方法。尽管 RS 技术取得了这些进展,但数据准确性、解释和地面实况调查方面的挑战可能依然存在。这项工作还为人工智能在环境数据改进、地下水诊断和预报方面的应用增添了新的叙事和视角,并表明需要进一步了解环境的复杂性,以促进创新,减轻与人工智能相关的挑战并使之民主化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Environmental Science and Health
Current Opinion in Environmental Science and Health Medicine-Public Health, Environmental and Occupational Health
CiteScore
14.90
自引率
0.00%
发文量
92
审稿时长
114 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信