Enhancing streamflow predictions with machine learning and Copula-Embedded Bayesian model averaging

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL
{"title":"Enhancing streamflow predictions with machine learning and Copula-Embedded Bayesian model averaging","authors":"","doi":"10.1016/j.jhydrol.2024.131986","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes a two-step probabilistic post-processing approach that combines different machine learning-based postprocessors through the Copula-Embedded Bayesian Model Averaging (COP-BMA) method to improve the performance of a hydrological model for streamflow predictions. The proposed approach serves a two-fold purpose: firstly, it aims to enhance the accuracy of streamflow predictions, and secondly, it provides probabilistic results that implicitly address the structural uncertainty inherent in different postprocessing methods. We validate our approach by applying it to the Conceptual Functional Equivalent, a lumped hydrologic model utilized for simulating extreme floods during Hurricane Harvey. The validation is conducted across twelve distinct watersheds in the Southeast Texas region at both daily and monthly scales. The findings indicate that the proposed framework significantly enhances the performance of the hydrologic model across the studied watershed. Specifically, on a daily time scale, there is a 23% and 53% improvement in the NSE and KGE respectively, while on a monthly time scale, the framework enhances NSE by 21% and KGE by 25%. Additionally, the MAE (cms) was notably reduced from 4.64 to 2.23 on the daily scale, and from 2.8 to 1.65 on the monthly scale.</p></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424013829","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a two-step probabilistic post-processing approach that combines different machine learning-based postprocessors through the Copula-Embedded Bayesian Model Averaging (COP-BMA) method to improve the performance of a hydrological model for streamflow predictions. The proposed approach serves a two-fold purpose: firstly, it aims to enhance the accuracy of streamflow predictions, and secondly, it provides probabilistic results that implicitly address the structural uncertainty inherent in different postprocessing methods. We validate our approach by applying it to the Conceptual Functional Equivalent, a lumped hydrologic model utilized for simulating extreme floods during Hurricane Harvey. The validation is conducted across twelve distinct watersheds in the Southeast Texas region at both daily and monthly scales. The findings indicate that the proposed framework significantly enhances the performance of the hydrologic model across the studied watershed. Specifically, on a daily time scale, there is a 23% and 53% improvement in the NSE and KGE respectively, while on a monthly time scale, the framework enhances NSE by 21% and KGE by 25%. Additionally, the MAE (cms) was notably reduced from 4.64 to 2.23 on the daily scale, and from 2.8 to 1.65 on the monthly scale.

利用机器学习和 Copula-Embedded Bayesian 模型求平均值加强对河水流量的预测
本研究提出了一种两步概率后处理方法,通过 Copula 嵌入式贝叶斯模型平均(COP-BMA)方法将不同的基于机器学习的后处理器结合在一起,以提高水文模型在预测流量方面的性能。所提出的方法有两个目的:首先,它旨在提高水流预测的准确性;其次,它提供了概率结果,隐含地解决了不同后处理方法固有的结构不确定性问题。我们将这一方法应用于 "概念功能等价物",以验证我们的方法。"概念功能等价物 "是一个集合水文模型,用于模拟哈维飓风期间的特大洪水。在德克萨斯州东南部地区的 12 个不同流域进行了日和月尺度的验证。研究结果表明,所提出的框架大大提高了所研究流域水文模型的性能。具体而言,在日时间尺度上,NSE 和 KGE 分别提高了 23% 和 53%;在月时间尺度上,该框架将 NSE 提高了 21%,KGE 提高了 25%。此外,日均值(cms)从 4.64 显著降至 2.23,月均值从 2.8 降至 1.65。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信