{"title":"Critically 3-frustrated signed graphs","authors":"","doi":"10.1016/j.disc.2024.114258","DOIUrl":null,"url":null,"abstract":"<div><p>Extending the notion of maxcut, the study of the frustration index of signed graphs is one of the basic questions in the theory of signed graphs. Recently two of the authors initiated the study of critically frustrated signed graphs. That is a signed graph whose frustration index decreases with the removal of any edge. The main focus of this study is on critical signed graphs which are not edge-disjoint unions of critically frustrated signed graphs (namely indecomposable signed graphs) and which are not built from other critically frustrated signed graphs by subdivision. We conjecture that for any given <em>k</em> there are only finitely many critically <em>k</em>-frustrated signed graphs of this kind.</p><p>Providing support for this conjecture we show that there are only two of such critically 3-frustrated signed graphs where there is no pair of edge-disjoint negative cycles. Similarly, we show that there are exactly ten critically 3-frustrated signed planar graphs that are neither decomposable nor subdivisions of other critically frustrated signed graphs. We present a method for building indecomposable critically frustrated signed graphs based on two given such signed graphs. We also show that the condition of being indecomposable is necessary for our conjecture.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003893/pdfft?md5=71ed29caccfef97965ce5a62c57baeb5&pid=1-s2.0-S0012365X24003893-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003893","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Extending the notion of maxcut, the study of the frustration index of signed graphs is one of the basic questions in the theory of signed graphs. Recently two of the authors initiated the study of critically frustrated signed graphs. That is a signed graph whose frustration index decreases with the removal of any edge. The main focus of this study is on critical signed graphs which are not edge-disjoint unions of critically frustrated signed graphs (namely indecomposable signed graphs) and which are not built from other critically frustrated signed graphs by subdivision. We conjecture that for any given k there are only finitely many critically k-frustrated signed graphs of this kind.
Providing support for this conjecture we show that there are only two of such critically 3-frustrated signed graphs where there is no pair of edge-disjoint negative cycles. Similarly, we show that there are exactly ten critically 3-frustrated signed planar graphs that are neither decomposable nor subdivisions of other critically frustrated signed graphs. We present a method for building indecomposable critically frustrated signed graphs based on two given such signed graphs. We also show that the condition of being indecomposable is necessary for our conjecture.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.