Xin Li , Daobin Han , Xinmin Li , Chunjie Zhou , Bo Shen , Honglu Wei , Qian Lou , Changjin Liu , Tingmei Chen
{"title":"PdPtCu mesoporous nanocube-based electrochemical sandwich immunosensor for detection of HIV-p24","authors":"Xin Li , Daobin Han , Xinmin Li , Chunjie Zhou , Bo Shen , Honglu Wei , Qian Lou , Changjin Liu , Tingmei Chen","doi":"10.1016/j.bioelechem.2024.108819","DOIUrl":null,"url":null,"abstract":"<div><p>The construction of simple, stable, low-cost and reproducible enzyme-free electrochemical biosensors can effectively avoid the problem of signal attenuation caused by enzyme inactivation. Hererin, we prepared a novel nanoenzymes PdPtCu mesoporous nanocubes (MNCs) to construct a label-free sandwich electrochemical immunosensor for the highly sensitivity detection of HIV-p24. PdPtCu MNCs have excellent peroxidase activity against hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) due to their synergistic ternary composition, large surface area and ability to penetrate mesoporous channels. Moreover, highly conductive and biocompatible gold nanoparticles@graphene oxide (AuNPs@GO) was introduced as a substrate to modify a glassy carbon electrode (GCE). Owing to the excellent electrochemical performance of the PdPtCu MNCs and AuNPs@GO, the developed immunosensors exhibited a good linear response from 0.04 pg/mL to 100 ng/mL with a low detection limit of 20 fg/mL. In addition, the established method exhibited excellent practical performance in human serum. This novel strategy provides a promising platform for ultrasensitive detection of the HIV-p24 in the field of clinical diagnostics.</p></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"161 ","pages":"Article 108819"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1567539424001816/pdfft?md5=837ed1921dd7e6f77374cc56e7d11833&pid=1-s2.0-S1567539424001816-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424001816","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The construction of simple, stable, low-cost and reproducible enzyme-free electrochemical biosensors can effectively avoid the problem of signal attenuation caused by enzyme inactivation. Hererin, we prepared a novel nanoenzymes PdPtCu mesoporous nanocubes (MNCs) to construct a label-free sandwich electrochemical immunosensor for the highly sensitivity detection of HIV-p24. PdPtCu MNCs have excellent peroxidase activity against hydrogen peroxide (H2O2) due to their synergistic ternary composition, large surface area and ability to penetrate mesoporous channels. Moreover, highly conductive and biocompatible gold nanoparticles@graphene oxide (AuNPs@GO) was introduced as a substrate to modify a glassy carbon electrode (GCE). Owing to the excellent electrochemical performance of the PdPtCu MNCs and AuNPs@GO, the developed immunosensors exhibited a good linear response from 0.04 pg/mL to 100 ng/mL with a low detection limit of 20 fg/mL. In addition, the established method exhibited excellent practical performance in human serum. This novel strategy provides a promising platform for ultrasensitive detection of the HIV-p24 in the field of clinical diagnostics.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.