Bound-constrained optimization using Lagrange multiplier for a length scale insensitive phase field fracture model

IF 4.7 2区 工程技术 Q1 MECHANICS
{"title":"Bound-constrained optimization using Lagrange multiplier for a length scale insensitive phase field fracture model","authors":"","doi":"10.1016/j.engfracmech.2024.110496","DOIUrl":null,"url":null,"abstract":"<div><p>The classical phase field model using the second-order geometric function <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>φ</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mi>φ</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> (i.e., AT2 model), where <span><math><mrow><mi>φ</mi><mo>∈</mo><mfenced><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow></math></span> is an auxiliary phase field variable representing material damage state, has wide applications in static and dynamic scenarios for brittle materials, but nonlinearity and inelasticity are found in its stress–strain curve. The phase field model using the linear geometric function <span><math><mrow><mi>α</mi><mrow><mo>(</mo><mi>φ</mi><mo>)</mo></mrow><mo>=</mo><mi>φ</mi></mrow></math></span> (i.e., AT1 model), can avoid this, and a linear elastic threshold is available in its stress–strain curve. However, both AT2 and AT1 models are length scale sensitive phase field models, which could have difficulty in adjusting fracture strength and crack band simultaneously through a single parameter (the length scale). In this paper, a generalized quadratic geometric function (linear combination of AT1 and AT2 models) is used in the phase field model, where the extra parameter in this geometric function makes it a length scale insensitive phase field model. Similar to the AT1 model, negative phases can happen in the proposed generalized quadratic geometric function model. To solve this problem, a bound-constrained optimization using the Lagrange multiplier is derived, and the Karush–Kuhn–Tucker (KKT) conditions change from strain energy and maximum history strain energy (an indirect method acting on phase) to phase and Lagrange multiplier (a direct method acting on phase). Several simulations successfully validated the proposed model. A single element analysis and a bar under cyclic loading show the different stress–strain curves obtained from different models. A simulation of Mode I Brazilian test is compared with the experiment conducted by the authors, and two more simulations of Mode II shear test and mixed mode PMMA tensile test are compared with results from the literature.</p></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0013794424006593/pdfft?md5=a75b31f7c0074a23a2c7f0927b8b3dbc&pid=1-s2.0-S0013794424006593-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424006593","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The classical phase field model using the second-order geometric function α(φ)=φ2 (i.e., AT2 model), where φ0,1 is an auxiliary phase field variable representing material damage state, has wide applications in static and dynamic scenarios for brittle materials, but nonlinearity and inelasticity are found in its stress–strain curve. The phase field model using the linear geometric function α(φ)=φ (i.e., AT1 model), can avoid this, and a linear elastic threshold is available in its stress–strain curve. However, both AT2 and AT1 models are length scale sensitive phase field models, which could have difficulty in adjusting fracture strength and crack band simultaneously through a single parameter (the length scale). In this paper, a generalized quadratic geometric function (linear combination of AT1 and AT2 models) is used in the phase field model, where the extra parameter in this geometric function makes it a length scale insensitive phase field model. Similar to the AT1 model, negative phases can happen in the proposed generalized quadratic geometric function model. To solve this problem, a bound-constrained optimization using the Lagrange multiplier is derived, and the Karush–Kuhn–Tucker (KKT) conditions change from strain energy and maximum history strain energy (an indirect method acting on phase) to phase and Lagrange multiplier (a direct method acting on phase). Several simulations successfully validated the proposed model. A single element analysis and a bar under cyclic loading show the different stress–strain curves obtained from different models. A simulation of Mode I Brazilian test is compared with the experiment conducted by the authors, and two more simulations of Mode II shear test and mixed mode PMMA tensile test are compared with results from the literature.

利用拉格朗日乘法器对长度尺度不敏感的相场断裂模型进行边界约束优化
使用二阶几何函数 α(φ)=φ2(即 AT2 模型)的经典相场模型,其中φ∈0,1 是代表材料损伤状态的辅助相场变量,在脆性材料的静态和动态场景中应用广泛,但其应力应变曲线存在非线性和非弹性。使用线性几何函数 α(φ)=φ(即 AT1 模型)的相场模型可以避免这种情况,其应力-应变曲线中存在线性弹性阈值。然而,AT2 和 AT1 模型都是对长度尺度敏感的相场模型,难以通过单一参数(长度尺度)同时调整断裂强度和裂缝带。本文在相场模型中采用了广义二次几何函数(AT1 和 AT2 模型的线性组合),该几何函数中的额外参数使其成为对长度尺度不敏感的相场模型。与 AT1 模型类似,在所提出的广义二次几何函数模型中也可能出现负相位。为解决这一问题,推导出了使用拉格朗日乘法器的有界约束优化方法,并将卡鲁什-库恩-塔克(KKT)条件从应变能和最大历史应变能(作用于相位的间接方法)改为相位和拉格朗日乘法器(作用于相位的直接方法)。多次模拟成功验证了所提出的模型。单元素分析和循环加载下的棒材显示了不同模型得到的不同应力-应变曲线。模式 I 巴西试验的模拟与作者进行的实验进行了比较,模式 II 剪切试验和混合模式 PMMA 拉伸试验的另外两个模拟与文献结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信