{"title":"Mechanical properties and micro-mechanism of seawater cementitious materials reinforced by in-situ polymerization","authors":"Shaoyong Wen , Mingli Cao , Guangzhao Liu","doi":"10.1016/j.conbuildmat.2024.138412","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the potential mechanism of in-situ polymerization of acrylamide (AM) for modifying seawater cementitious materials is crucial for designing high-strength and durable marine concrete. Herein, the acrylamide (AM) in-situ polymerization was investigated for its effects on the hydration behavior, micro-morphology, and pore structure of cementitious materials mixed with seawater and freshwater through a series of elaborately designed microscopic characterization methods. The results reveal that the hydration process of cementitious materials proceeds simultaneously with in-situ polymerization. However, compared with freshwater mixtures, seawater provides a large number of metal ions and SO<sub>4</sub><sup>2-</sup> ions, which can cross-link with the generated polyacrylamide (PAM) during in-situ polymerization to form a three-dimensional network structure. The synergistic effect of the hydration, in-situ polymerization, and cross-linking processes of cementitious materials can improve the pore structure of seawater-mixed paste, enhance erosion resistance, and improve the stability and toughness of microstructure. These findings were further confirmed by comparing infrared spectroscopy results, hydration products, pore size, and micro-morphology analysis as well as flexural performance tests. This is of great significance to guide the design of novel materials in marine infrastructure.</p></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"449 ","pages":"Article 138412"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824035542","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the potential mechanism of in-situ polymerization of acrylamide (AM) for modifying seawater cementitious materials is crucial for designing high-strength and durable marine concrete. Herein, the acrylamide (AM) in-situ polymerization was investigated for its effects on the hydration behavior, micro-morphology, and pore structure of cementitious materials mixed with seawater and freshwater through a series of elaborately designed microscopic characterization methods. The results reveal that the hydration process of cementitious materials proceeds simultaneously with in-situ polymerization. However, compared with freshwater mixtures, seawater provides a large number of metal ions and SO42- ions, which can cross-link with the generated polyacrylamide (PAM) during in-situ polymerization to form a three-dimensional network structure. The synergistic effect of the hydration, in-situ polymerization, and cross-linking processes of cementitious materials can improve the pore structure of seawater-mixed paste, enhance erosion resistance, and improve the stability and toughness of microstructure. These findings were further confirmed by comparing infrared spectroscopy results, hydration products, pore size, and micro-morphology analysis as well as flexural performance tests. This is of great significance to guide the design of novel materials in marine infrastructure.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.