{"title":"Mechanical properties and micro-mechanism of seawater cementitious materials reinforced by in-situ polymerization","authors":"Shaoyong Wen , Mingli Cao , Guangzhao Liu","doi":"10.1016/j.conbuildmat.2024.138412","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the potential mechanism of in-situ polymerization of acrylamide (AM) for modifying seawater cementitious materials is crucial for designing high-strength and durable marine concrete. Herein, the acrylamide (AM) in-situ polymerization was investigated for its effects on the hydration behavior, micro-morphology, and pore structure of cementitious materials mixed with seawater and freshwater through a series of elaborately designed microscopic characterization methods. The results reveal that the hydration process of cementitious materials proceeds simultaneously with in-situ polymerization. However, compared with freshwater mixtures, seawater provides a large number of metal ions and SO<sub>4</sub><sup>2-</sup> ions, which can cross-link with the generated polyacrylamide (PAM) during in-situ polymerization to form a three-dimensional network structure. The synergistic effect of the hydration, in-situ polymerization, and cross-linking processes of cementitious materials can improve the pore structure of seawater-mixed paste, enhance erosion resistance, and improve the stability and toughness of microstructure. These findings were further confirmed by comparing infrared spectroscopy results, hydration products, pore size, and micro-morphology analysis as well as flexural performance tests. This is of great significance to guide the design of novel materials in marine infrastructure.</p></div>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"449 ","pages":"Article 138412"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824035542","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the potential mechanism of in-situ polymerization of acrylamide (AM) for modifying seawater cementitious materials is crucial for designing high-strength and durable marine concrete. Herein, the acrylamide (AM) in-situ polymerization was investigated for its effects on the hydration behavior, micro-morphology, and pore structure of cementitious materials mixed with seawater and freshwater through a series of elaborately designed microscopic characterization methods. The results reveal that the hydration process of cementitious materials proceeds simultaneously with in-situ polymerization. However, compared with freshwater mixtures, seawater provides a large number of metal ions and SO42- ions, which can cross-link with the generated polyacrylamide (PAM) during in-situ polymerization to form a three-dimensional network structure. The synergistic effect of the hydration, in-situ polymerization, and cross-linking processes of cementitious materials can improve the pore structure of seawater-mixed paste, enhance erosion resistance, and improve the stability and toughness of microstructure. These findings were further confirmed by comparing infrared spectroscopy results, hydration products, pore size, and micro-morphology analysis as well as flexural performance tests. This is of great significance to guide the design of novel materials in marine infrastructure.
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.