A note on rainbow stackings of random edge-colorings of hypergraphs

IF 0.7 3区 数学 Q2 MATHEMATICS
{"title":"A note on rainbow stackings of random edge-colorings of hypergraphs","authors":"","doi":"10.1016/j.disc.2024.114261","DOIUrl":null,"url":null,"abstract":"<div><p>A rainbow stacking of <em>r</em>-edge-colorings <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> of the complete <em>d</em>-uniform hypergraph on <em>n</em> vertices is a way of superimposing <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> so that no edges of the same color are superimposed on each other. The definition of rainbow stackings of graphs was proposed by Alon, Defant, and Kravitz, and they determined a sharp threshold for <em>r</em> (as a function of <em>m</em> and <em>n</em>) governing the existence and nonexistence of rainbow stackings of random <em>r</em>-edge-colorings <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. In this paper, we extend their result to <em>d</em>-uniform hypergraph, obtain a sharp threshold for <em>r</em> controlling the existence and nonexistence of rainbow stackings of random <em>r</em>-edge-colorings <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> of the complete <em>d</em>-uniform hypergraph for <span><math><mi>d</mi><mo>≥</mo><mn>3</mn></math></span>.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003923","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A rainbow stacking of r-edge-colorings χ1,,χm of the complete d-uniform hypergraph on n vertices is a way of superimposing χ1,,χm so that no edges of the same color are superimposed on each other. The definition of rainbow stackings of graphs was proposed by Alon, Defant, and Kravitz, and they determined a sharp threshold for r (as a function of m and n) governing the existence and nonexistence of rainbow stackings of random r-edge-colorings χ1,,χm of the complete graph Kn. In this paper, we extend their result to d-uniform hypergraph, obtain a sharp threshold for r controlling the existence and nonexistence of rainbow stackings of random r-edge-colorings χ1,,χm of the complete d-uniform hypergraph for d3.

关于超图随机边着色的彩虹堆积的说明
n 个顶点上的完整 d-Uniform 超图的 r 边颜色 χ1,...,χm 的彩虹叠加是一种叠加 χ1,...,χm 的方法,这样就不会有相同颜色的边相互叠加。图的彩虹叠加定义是由 Alon、Defant 和 Kravitz 提出的,他们确定了 r 的一个尖锐临界值(作为 m 和 n 的函数),该临界值决定了完整图 Kn 的随机 r 边颜色χ1,...,χm 的彩虹叠加存在与否。在本文中,我们将他们的结果推广到 d-uniform hypergraph,得到了一个控制完整 d-uniform hypergraph 的随机 r 边着色 χ1,...,χm 的彩虹堆叠存在与否的 r 的尖锐阈值,且 d≥3 时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信