On Bernstein- and Marcinkiewicz-type inequalities on multivariate Cα-domains

IF 0.9 3区 数学 Q2 MATHEMATICS
Feng Dai , András Kroó , Andriy Prymak
{"title":"On Bernstein- and Marcinkiewicz-type inequalities on multivariate Cα-domains","authors":"Feng Dai ,&nbsp;András Kroó ,&nbsp;Andriy Prymak","doi":"10.1016/j.jat.2024.106101","DOIUrl":null,"url":null,"abstract":"<div><p>We prove new Bernstein and Markov type inequalities in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> spaces associated with the normal and the tangential derivatives on the boundary of a general compact <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span>-domain with <span><math><mrow><mn>1</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>2</mn></mrow></math></span>. These estimates are also applied to establish Marcinkiewicz type inequalities for discretization of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> norms of algebraic polynomials on <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span>-domains with asymptotically optimal number of function samples used.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524000893","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove new Bernstein and Markov type inequalities in Lp spaces associated with the normal and the tangential derivatives on the boundary of a general compact Cα-domain with 1α2. These estimates are also applied to establish Marcinkiewicz type inequalities for discretization of Lp norms of algebraic polynomials on Cα-domains with asymptotically optimal number of function samples used.

论多变量 Cα 域上的伯恩斯坦和马钦凯维奇型不等式
我们证明了 Lp 空间中与 1≤α≤2 的一般紧凑 Cα 域边界上的法导数和切导数相关的新伯恩斯坦和马尔可夫式不等式。这些估计值还被应用于建立 Marcinkiewicz 型不等式,用于 Cα 域上代数多项式 Lp 准则的离散化,并使用渐近最优的函数样本数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信