{"title":"Amplified precipitation extremes since 21st century in the Beijing-Tianjin-Hebei urban agglomeration, China","authors":"","doi":"10.1016/j.atmosres.2024.107695","DOIUrl":null,"url":null,"abstract":"<div><p>The Beijing-Tianjin-Hebei urban agglomeration(BTH) has successively witnessed the extraordinary precipitation extremes (PEs) with huge economic losses and death-toll in the recent decade. To timely and comprehensively understand the PEs in the urban agglomeration, we investigate the characteristic and mechanism of PEs variation based on six extreme precipitation indices (EPIs) including maximum daily precipitation(Rx1day), maximum consecutive 5-day precipitation(Rx5day), total precipitation with daily precipitation more than the 95th percentile (R95P), average daily precipitation on wet days (SDII), heavy precipitation days(R25) and very heavy precipitation days(R50). Our results suggest that the PEs of summertime over the BTH has significantly amplified since 21st century. During 2001–2023, the Rx1day, Rx5day, R95p, SDII, R25 and R50 significantly increased at a rate of 13.5 mm/10a, 26.3 mm/10a, 49.4 mm/10a, 2.2 mm/10a, 0.78d/10a and 0.46d/10a, respectively. The average contribution of urbanization to the increased EPIs is estimated by 21 %. The strengthened East Asian Summer Monsoon, intensified and northward extended West Pacific Subtropical High may increase occurrence and severity of PEs in the era of rapid global warming. Three case studies of PEs in 2012, 2016 and 2023 verify our finding. We hope this study can help policy makers to shape strategies to mitigate or reduce societal impact of PEs under global warming crisis and rapid urbanization.</p></div>","PeriodicalId":8600,"journal":{"name":"Atmospheric Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169809524004770/pdfft?md5=d38e23c33606398cf8f9ef20d3c374e4&pid=1-s2.0-S0169809524004770-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169809524004770","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The Beijing-Tianjin-Hebei urban agglomeration(BTH) has successively witnessed the extraordinary precipitation extremes (PEs) with huge economic losses and death-toll in the recent decade. To timely and comprehensively understand the PEs in the urban agglomeration, we investigate the characteristic and mechanism of PEs variation based on six extreme precipitation indices (EPIs) including maximum daily precipitation(Rx1day), maximum consecutive 5-day precipitation(Rx5day), total precipitation with daily precipitation more than the 95th percentile (R95P), average daily precipitation on wet days (SDII), heavy precipitation days(R25) and very heavy precipitation days(R50). Our results suggest that the PEs of summertime over the BTH has significantly amplified since 21st century. During 2001–2023, the Rx1day, Rx5day, R95p, SDII, R25 and R50 significantly increased at a rate of 13.5 mm/10a, 26.3 mm/10a, 49.4 mm/10a, 2.2 mm/10a, 0.78d/10a and 0.46d/10a, respectively. The average contribution of urbanization to the increased EPIs is estimated by 21 %. The strengthened East Asian Summer Monsoon, intensified and northward extended West Pacific Subtropical High may increase occurrence and severity of PEs in the era of rapid global warming. Three case studies of PEs in 2012, 2016 and 2023 verify our finding. We hope this study can help policy makers to shape strategies to mitigate or reduce societal impact of PEs under global warming crisis and rapid urbanization.
期刊介绍:
The journal publishes scientific papers (research papers, review articles, letters and notes) dealing with the part of the atmosphere where meteorological events occur. Attention is given to all processes extending from the earth surface to the tropopause, but special emphasis continues to be devoted to the physics of clouds, mesoscale meteorology and air pollution, i.e. atmospheric aerosols; microphysical processes; cloud dynamics and thermodynamics; numerical simulation, climatology, climate change and weather modification.