{"title":"Corrosion area detection and depth prediction using machine learning","authors":"Eun-Young Son, Dayeon Jeong, Min-Jae Oh","doi":"10.1016/j.ijnaoe.2024.100617","DOIUrl":null,"url":null,"abstract":"<div><p>Corrosion reduces the thickness of a structure, making it less safe and reducing its lifespan. In particular, ships are vulnerable to corrosion because they are always submerged in seawater. This corrosion is identified through regular inspections of the ship structure, and gradually increases in scope if no action is taken at an early stage. In this study, we developed a model to detect the corrosion areas and predict the depth of corrosion in the detected areas. The corrosion area detection model used a machine learning model based on Mask R-CNN. The 35,753 images were used to map corrosion images and measured corrosion depths. Four different color maps and regression algorithm were used to predict corrosion depths and their performance was compared. The new attempt to predict the corrosion depth from images in this study will contribute to improving existing corrosion control methods by providing information for corrosion prevention and maintenance.</p></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"16 ","pages":"Article 100617"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2092678224000360/pdfft?md5=ff4d3a1dda19bf30e9c6c74e53b12ef6&pid=1-s2.0-S2092678224000360-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678224000360","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
Corrosion reduces the thickness of a structure, making it less safe and reducing its lifespan. In particular, ships are vulnerable to corrosion because they are always submerged in seawater. This corrosion is identified through regular inspections of the ship structure, and gradually increases in scope if no action is taken at an early stage. In this study, we developed a model to detect the corrosion areas and predict the depth of corrosion in the detected areas. The corrosion area detection model used a machine learning model based on Mask R-CNN. The 35,753 images were used to map corrosion images and measured corrosion depths. Four different color maps and regression algorithm were used to predict corrosion depths and their performance was compared. The new attempt to predict the corrosion depth from images in this study will contribute to improving existing corrosion control methods by providing information for corrosion prevention and maintenance.
期刊介绍:
International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.