Meiying Li , Yan Yan , Liwang Zeng , Zhengnan Xie , Zehong Ding , Jinghao Yang , Yu Wang , Jianxiang Ma , Kaisen Huo , Xiaoliang Yang , Qiyu Xia , Xiao xue Ye , Chaochao Li , Zhiqiang Jin , Licheng Ren , Wei Hu
{"title":"Methyl jasmonate activated regulatory module Ma14-3-3e-MbHLH130-MbACO13/MbACS7 promoting ethylene biosynthesis and fruit ripening in banana","authors":"Meiying Li , Yan Yan , Liwang Zeng , Zhengnan Xie , Zehong Ding , Jinghao Yang , Yu Wang , Jianxiang Ma , Kaisen Huo , Xiaoliang Yang , Qiyu Xia , Xiao xue Ye , Chaochao Li , Zhiqiang Jin , Licheng Ren , Wei Hu","doi":"10.1016/j.postharvbio.2024.113215","DOIUrl":null,"url":null,"abstract":"<div><p>Methyl jasmonate (MeJA), an important phytohormone, plays a vital role in many biological processes. However, its effect and mechanism in regulating ethylene synthesis and fruit ripening in banana remain unknown. In this research, we found that exogenous MeJA accelerated postharvest ripening of banana, which coincided with increased ethylene production and upregulation of <em>MbACS7</em> and <em>MbACO13</em> expression. MabHLH130 directly interacted with and stimulated the transcription of <em>MbACS7</em> and <em>MbACO13</em>. Additionally, MabHLH130 interacted with Ma14-3-3e through the RHSSSP motif. Overexpression of either <em>MabHLH130</em> or <em>Ma14-3–3e</em> in tomato promoted ethylene production and fruit ripening, and this effect was enhanced by exogenous MeJA treatment. Furthermore, the Ma14-3–3e-MabHLH130 interaction module activated <em>MbACS7</em> and <em>MbACO13</em> transcription, which was enhanced by exogenous MeJA treatment. Taken together, these results demonstrated that the MeJA-responsive Ma14-3–3e-MabHLH130-<em>MbACS7</em>/<em>MbACO13</em> module promoted ethylene biosynthesis and fruit ripening in bananas, providing valuable genetic targets for breeding programs aimed at extending fruit shelf-life.</p></div>","PeriodicalId":20328,"journal":{"name":"Postharvest Biology and Technology","volume":"219 ","pages":"Article 113215"},"PeriodicalIF":6.4000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925521424004605/pdfft?md5=491c6b75050a77a3bb6764b1e1140a68&pid=1-s2.0-S0925521424004605-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Postharvest Biology and Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925521424004605","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Methyl jasmonate (MeJA), an important phytohormone, plays a vital role in many biological processes. However, its effect and mechanism in regulating ethylene synthesis and fruit ripening in banana remain unknown. In this research, we found that exogenous MeJA accelerated postharvest ripening of banana, which coincided with increased ethylene production and upregulation of MbACS7 and MbACO13 expression. MabHLH130 directly interacted with and stimulated the transcription of MbACS7 and MbACO13. Additionally, MabHLH130 interacted with Ma14-3-3e through the RHSSSP motif. Overexpression of either MabHLH130 or Ma14-3–3e in tomato promoted ethylene production and fruit ripening, and this effect was enhanced by exogenous MeJA treatment. Furthermore, the Ma14-3–3e-MabHLH130 interaction module activated MbACS7 and MbACO13 transcription, which was enhanced by exogenous MeJA treatment. Taken together, these results demonstrated that the MeJA-responsive Ma14-3–3e-MabHLH130-MbACS7/MbACO13 module promoted ethylene biosynthesis and fruit ripening in bananas, providing valuable genetic targets for breeding programs aimed at extending fruit shelf-life.
期刊介绍:
The journal is devoted exclusively to the publication of original papers, review articles and frontiers articles on biological and technological postharvest research. This includes the areas of postharvest storage, treatments and underpinning mechanisms, quality evaluation, packaging, handling and distribution of fresh horticultural crops including fruit, vegetables, flowers and nuts, but excluding grains, seeds and forages.
Papers reporting novel insights from fundamental and interdisciplinary research will be particularly encouraged. These disciplines include systems biology, bioinformatics, entomology, plant physiology, plant pathology, (bio)chemistry, engineering, modelling, and technologies for nondestructive testing.
Manuscripts on fresh food crops that will be further processed after postharvest storage, or on food processes beyond refrigeration, packaging and minimal processing will not be considered.