Proofs of some conjectures of Merca on truncated series involving the Rogers-Ramanujan functions

IF 0.9 2区 数学 Q2 MATHEMATICS
Yongqiang Chen, Olivia X.M. Yao
{"title":"Proofs of some conjectures of Merca on truncated series involving the Rogers-Ramanujan functions","authors":"Yongqiang Chen,&nbsp;Olivia X.M. Yao","doi":"10.1016/j.jcta.2024.105956","DOIUrl":null,"url":null,"abstract":"<div><p>In 2012, Andrews and Merca investigated the truncated version of the Euler pentagonal number theorem. Their work has opened up a new study on truncated theta series and has inspired several mathematicians to work on the topic. In 2019, Merca studied the Rogers-Ramanujan functions and posed three groups of conjectures on truncated series involving the Rogers-Ramanujan functions. In this paper, we present a uniform method to prove the three groups of conjectures given by Merca based on a result due to Pólya and Szegö.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"210 ","pages":"Article 105956"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000955","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 2012, Andrews and Merca investigated the truncated version of the Euler pentagonal number theorem. Their work has opened up a new study on truncated theta series and has inspired several mathematicians to work on the topic. In 2019, Merca studied the Rogers-Ramanujan functions and posed three groups of conjectures on truncated series involving the Rogers-Ramanujan functions. In this paper, we present a uniform method to prove the three groups of conjectures given by Merca based on a result due to Pólya and Szegö.

梅尔卡关于涉及罗杰斯-拉马努扬函数的截断数列的一些猜想的证明
2012 年,安德鲁斯和梅尔卡研究了欧拉五边形数定理的截断版本。他们的研究开启了截断θ级数的新研究,并激发了多位数学家对这一课题的研究。2019 年,Merca 研究了 Rogers-Ramanujan 函数,并就涉及 Rogers-Ramanujan 函数的截断数列提出了三组猜想。在本文中,我们根据 Pólya 和 Szegö 的一个结果,提出了证明 Merca 提出的三组猜想的统一方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信