Daniel L. Crane, Ruslan L. Davidchack, Alexander N. Gorban
{"title":"Minimal cover of high-dimensional chaotic attractors by embedded recurrent patterns","authors":"Daniel L. Crane, Ruslan L. Davidchack, Alexander N. Gorban","doi":"10.1016/j.cnsns.2024.108345","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a general method for constructing a minimal cover of high-dimensional chaotic attractors by embedded unstable recurrent patterns. By minimal cover we mean a subset of available patterns such that the approximation of chaotic dynamics by a minimal cover with a predefined proximity threshold is as good as the approximation by the full available set. The proximity measure, based on the concept of a directed Hausdorff distance, can be chosen with considerable freedom and adapted to the properties of a given chaotic system. In the context of a spatiotemporally chaotic attractor of the Kuramoto–Sivashinsky system on a periodic domain, we demonstrate that the minimal cover can be faithfully constructed even when the proximity measure is defined within a subspace of dimension much smaller than the dimension of space containing the attractor. We discuss how the minimal cover can be used to provide a reduced description of the attractor structure and the dynamics on it.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1007570424005306/pdfft?md5=844c592809c9f30fd2e63494c7b3060d&pid=1-s2.0-S1007570424005306-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005306","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a general method for constructing a minimal cover of high-dimensional chaotic attractors by embedded unstable recurrent patterns. By minimal cover we mean a subset of available patterns such that the approximation of chaotic dynamics by a minimal cover with a predefined proximity threshold is as good as the approximation by the full available set. The proximity measure, based on the concept of a directed Hausdorff distance, can be chosen with considerable freedom and adapted to the properties of a given chaotic system. In the context of a spatiotemporally chaotic attractor of the Kuramoto–Sivashinsky system on a periodic domain, we demonstrate that the minimal cover can be faithfully constructed even when the proximity measure is defined within a subspace of dimension much smaller than the dimension of space containing the attractor. We discuss how the minimal cover can be used to provide a reduced description of the attractor structure and the dynamics on it.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.