Size Dependent Photocatalytic Activity of Mesoporous ZnIn2S4 Nanocrystal Networks

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Evangelos K. Andreou, Ioannis Vamvasakis, Andreas Douloumis, Georgios Kopidakis and Gerasimos S. Armatas*, 
{"title":"Size Dependent Photocatalytic Activity of Mesoporous ZnIn2S4 Nanocrystal Networks","authors":"Evangelos K. Andreou,&nbsp;Ioannis Vamvasakis,&nbsp;Andreas Douloumis,&nbsp;Georgios Kopidakis and Gerasimos S. Armatas*,&nbsp;","doi":"10.1021/acscatal.4c0419510.1021/acscatal.4c04195","DOIUrl":null,"url":null,"abstract":"<p >Understanding of the band-edge electronic structure and charge-transfer dynamics in size-confined nanostructures is vital in designing new materials for energy conversion applications, including green hydrogen production, decomposition of organic pollutants and solar cells. In this study, a series of mesoporous materials comprising continuous networks of linked zinc indium sulfide (ZnIn<sub>2</sub>S<sub>4</sub>) nanocrystals with a tunable diameter (ranging from 4 to 12 nm) is reported. These nanomaterials demonstrate intriguing size-dependent electronic properties, charge-transfer kinetics and photocatalytic behaviors. Our extensive characterizations uncover strong size effects on the catalytic activity of constituent ZnIn<sub>2</sub>S<sub>4</sub> nanocrystals in the photochemical hydrogen evolution reaction. As an outcome, the optimized single-component ZnIn<sub>2</sub>S<sub>4</sub> mesostructure produces hydrogen at a 7.8 mmol g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup> release rate under ultraviolet (UV)–visible light irradiation associated with an apparent quantum yield (AQY) of 17.2% at 420 ± 10 nm, far surpassing its microstructured counterpart by a factor of 10.7×. These findings provide a valuable perspective for the rational design of semiconductor nanostructures through synthetic engineering, aiming at the development of high-performance catalysts for zero-carbon energy-related applications.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscatal.4c04195","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c04195","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding of the band-edge electronic structure and charge-transfer dynamics in size-confined nanostructures is vital in designing new materials for energy conversion applications, including green hydrogen production, decomposition of organic pollutants and solar cells. In this study, a series of mesoporous materials comprising continuous networks of linked zinc indium sulfide (ZnIn2S4) nanocrystals with a tunable diameter (ranging from 4 to 12 nm) is reported. These nanomaterials demonstrate intriguing size-dependent electronic properties, charge-transfer kinetics and photocatalytic behaviors. Our extensive characterizations uncover strong size effects on the catalytic activity of constituent ZnIn2S4 nanocrystals in the photochemical hydrogen evolution reaction. As an outcome, the optimized single-component ZnIn2S4 mesostructure produces hydrogen at a 7.8 mmol gcat–1 h–1 release rate under ultraviolet (UV)–visible light irradiation associated with an apparent quantum yield (AQY) of 17.2% at 420 ± 10 nm, far surpassing its microstructured counterpart by a factor of 10.7×. These findings provide a valuable perspective for the rational design of semiconductor nanostructures through synthetic engineering, aiming at the development of high-performance catalysts for zero-carbon energy-related applications.

Abstract Image

介孔 ZnIn2S4 纳米晶网络的光催化活性与尺寸有关
了解尺寸受限纳米结构中的带边电子结构和电荷转移动力学,对于设计用于能源转换应用(包括绿色制氢、有机污染物分解和太阳能电池)的新材料至关重要。本研究报告了一系列介孔材料,这些材料由直径可调(从 4 纳米到 12 纳米)的硫化锌铟(ZnIn2S4)纳米晶体连续网络组成。这些纳米材料展示了与尺寸相关的电子特性、电荷转移动力学和光催化行为。我们的广泛表征发现,在光化学氢进化反应中,尺寸对 ZnIn2S4 纳米晶体的催化活性有很大影响。经过优化的单组分 ZnIn2S4 介观结构在紫外-可见光照射下产生的氢气释放率为 7.8 mmol gcat-1 h-1,在 420 ± 10 nm 处的表观量子产率(AQY)为 17.2%,远远超过其微观结构对应物的 10.7 倍。这些发现为通过合成工程合理设计半导体纳米结构提供了一个有价值的视角,旨在为零碳能源相关应用开发高性能催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信