Fusion in Context: A Multimodal Approach to Affective State Recognition

Youssef Mohamed, Severin Lemaignan, Arzu Guneysu, Patric Jensfelt, Christian Smith
{"title":"Fusion in Context: A Multimodal Approach to Affective State Recognition","authors":"Youssef Mohamed, Severin Lemaignan, Arzu Guneysu, Patric Jensfelt, Christian Smith","doi":"arxiv-2409.11906","DOIUrl":null,"url":null,"abstract":"Accurate recognition of human emotions is a crucial challenge in affective\ncomputing and human-robot interaction (HRI). Emotional states play a vital role\nin shaping behaviors, decisions, and social interactions. However, emotional\nexpressions can be influenced by contextual factors, leading to\nmisinterpretations if context is not considered. Multimodal fusion, combining\nmodalities like facial expressions, speech, and physiological signals, has\nshown promise in improving affect recognition. This paper proposes a\ntransformer-based multimodal fusion approach that leverages facial thermal\ndata, facial action units, and textual context information for context-aware\nemotion recognition. We explore modality-specific encoders to learn tailored\nrepresentations, which are then fused using additive fusion and processed by a\nshared transformer encoder to capture temporal dependencies and interactions.\nThe proposed method is evaluated on a dataset collected from participants\nengaged in a tangible tabletop Pacman game designed to induce various affective\nstates. Our results demonstrate the effectiveness of incorporating contextual\ninformation and multimodal fusion for affective state recognition.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate recognition of human emotions is a crucial challenge in affective computing and human-robot interaction (HRI). Emotional states play a vital role in shaping behaviors, decisions, and social interactions. However, emotional expressions can be influenced by contextual factors, leading to misinterpretations if context is not considered. Multimodal fusion, combining modalities like facial expressions, speech, and physiological signals, has shown promise in improving affect recognition. This paper proposes a transformer-based multimodal fusion approach that leverages facial thermal data, facial action units, and textual context information for context-aware emotion recognition. We explore modality-specific encoders to learn tailored representations, which are then fused using additive fusion and processed by a shared transformer encoder to capture temporal dependencies and interactions. The proposed method is evaluated on a dataset collected from participants engaged in a tangible tabletop Pacman game designed to induce various affective states. Our results demonstrate the effectiveness of incorporating contextual information and multimodal fusion for affective state recognition.
情境融合:情感状态识别的多模态方法
准确识别人类情绪是情感计算和人机交互(HRI)领域的一项重要挑战。情绪状态在塑造行为、决策和社会交往方面起着至关重要的作用。然而,情绪表达可能会受到上下文因素的影响,如果不考虑上下文因素,就会导致错误的解释。多模态融合将面部表情、语音和生理信号等模态结合在一起,有望提高情感识别能力。本文提出了一种基于变换器的多模态融合方法,利用面部热数据、面部动作单元和文本上下文信息进行情境感知的情感识别。我们探索了特定模态编码器来学习量身定制的表述,然后使用相加融合法进行融合,并由共享变压器编码器进行处理,以捕捉时间依赖性和交互。我们的结果表明,将上下文信息和多模态融合用于情感状态识别非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信