{"title":"Preliminarily exploration of the minimum structural unit of amorphous aluminosilicate glass by cluster-plus-glue-atom model","authors":"Qizhen Wang, Shuang Zhang, Yanping Ma, Wanyu Ding, Chuang Dong","doi":"10.1016/j.mtcomm.2024.110355","DOIUrl":null,"url":null,"abstract":"The research and development of next generation amorphous aluminosilicate glass is hampered by the absence of reasonable minimum structural unit model, which should display more satisfactory mechanical strength and better production process compatibility. In this report, the minimum structural unit of Corning gorilla series of amorphous aluminosilicate glass is explored by the cluster-plus-glue-atom (CPGA) model, preliminarily. Taking typical -tridymite () as the parent phase material, the cluster formula (CF) and unit cluster of are established as [Si-O]Si and [(CF)-(CF)](CF). The metal cations (MC, 2≤≤5 and ≠4) are the network former, which are introduced into [Si-O]MC structure. Besides, MC is also introduced into the amorphous aluminosilicate glass as network external, which keeps the sum valence of MC and MC as 4. In case of Corning gorilla series of amorphous aluminosilicate glass, the composition is firstly measured by Special Glass Key Laboratory of Hainan Province. Then, the unit clusters of Corning gorilla series of amorphous aluminosilicate glass are analyzed by CPGA model. The results reveal that the development trend mainly depends on the improvement of MC content, which is gradually improved from 4 to 10. Besides, CPGA unit clusters results of six generations amorphous aluminosilicate glass correspond well with the measurement results, which reflect the rationality of CPGA model. Based on CPGA unit cluster [(CF)-(CF)](CF), the upper limit of MC content for amorphous aluminosilicate glass is 12. So, CPGA unit clusters for next generation of amorphous aluminosilicate glass are designed, which could further improve MC content from 10 to 11. With the guidance of CPGA model, the amorphous aluminosilicate glass enterprise, as well as other kinds of glass enterprise, could avoid the huge research and development costs, as well long research and development time.","PeriodicalId":18477,"journal":{"name":"Materials Today Communications","volume":"9 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtcomm.2024.110355","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The research and development of next generation amorphous aluminosilicate glass is hampered by the absence of reasonable minimum structural unit model, which should display more satisfactory mechanical strength and better production process compatibility. In this report, the minimum structural unit of Corning gorilla series of amorphous aluminosilicate glass is explored by the cluster-plus-glue-atom (CPGA) model, preliminarily. Taking typical -tridymite () as the parent phase material, the cluster formula (CF) and unit cluster of are established as [Si-O]Si and [(CF)-(CF)](CF). The metal cations (MC, 2≤≤5 and ≠4) are the network former, which are introduced into [Si-O]MC structure. Besides, MC is also introduced into the amorphous aluminosilicate glass as network external, which keeps the sum valence of MC and MC as 4. In case of Corning gorilla series of amorphous aluminosilicate glass, the composition is firstly measured by Special Glass Key Laboratory of Hainan Province. Then, the unit clusters of Corning gorilla series of amorphous aluminosilicate glass are analyzed by CPGA model. The results reveal that the development trend mainly depends on the improvement of MC content, which is gradually improved from 4 to 10. Besides, CPGA unit clusters results of six generations amorphous aluminosilicate glass correspond well with the measurement results, which reflect the rationality of CPGA model. Based on CPGA unit cluster [(CF)-(CF)](CF), the upper limit of MC content for amorphous aluminosilicate glass is 12. So, CPGA unit clusters for next generation of amorphous aluminosilicate glass are designed, which could further improve MC content from 10 to 11. With the guidance of CPGA model, the amorphous aluminosilicate glass enterprise, as well as other kinds of glass enterprise, could avoid the huge research and development costs, as well long research and development time.
期刊介绍:
Materials Today Communications is a primary research journal covering all areas of materials science. The journal offers the materials community an innovative, efficient and flexible route for the publication of original research which has not found the right home on first submission.