Marija Ćorović, Milica Veljković, Ana Milivojević, Anja P. Ivanković, Stevan Blagojević, Rada Pjanović, Dejan Bezbradica
{"title":"In vitro assessment of skin permeation properties of enzymatically derived oil-based fatty acid esters of vitamin C","authors":"Marija Ćorović, Milica Veljković, Ana Milivojević, Anja P. Ivanković, Stevan Blagojević, Rada Pjanović, Dejan Bezbradica","doi":"10.1002/ardp.202400538","DOIUrl":null,"url":null,"abstract":"<p>Current topical formulations containing vitamin C face limitations in therapeutic effectiveness due to the skin's selective properties that impede drug deposition. Consequently, the widespread use of toxic and irritating chemical permeation enhancers is common. Hereby, we investigated enzymatically derived fatty acid ascorbyl esters (FAAEs) obtained using natural oils for their skin permeation properties using the Strat-M® skin model in a Franz cell diffusion study. By evaluating various cosmetic formulations without added enhancers, we found that emulgel is most suitable for enhancing the cutaneous and transdermal delivery of FAAEs. Furthermore, medium-chain coconut oil-derived FAAEs exhibited faster diffusion rates compared to sunflower oil-based FAAEs with long-side acyl residues, including the commonly applied ascorbyl palmitate. Experimental data were successfully fitted using the Peppas and Sahlin model, which accounted for a <i>lag</i> phase and the combined effect of Fickian diffusion and polymer relaxation. In the case of long-chain esters, the <i>lag</i> phase was prolonged, and the calculated effective diffusion coefficients (<i>D</i><sub>eff</sub>) were lower compared to medium-chain FAAEs. Accordingly, the highest <i>D</i><sub>eff</sub> value was observed for ascorbyl caprylate, being even 60 times higher than for ascorbyl palmitate. These results suggest the emerging potential of emulgel with incorporated coconut oil-derived FAAEs for efficiently delivering vitamin C into the skin.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"357 11","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400538","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Current topical formulations containing vitamin C face limitations in therapeutic effectiveness due to the skin's selective properties that impede drug deposition. Consequently, the widespread use of toxic and irritating chemical permeation enhancers is common. Hereby, we investigated enzymatically derived fatty acid ascorbyl esters (FAAEs) obtained using natural oils for their skin permeation properties using the Strat-M® skin model in a Franz cell diffusion study. By evaluating various cosmetic formulations without added enhancers, we found that emulgel is most suitable for enhancing the cutaneous and transdermal delivery of FAAEs. Furthermore, medium-chain coconut oil-derived FAAEs exhibited faster diffusion rates compared to sunflower oil-based FAAEs with long-side acyl residues, including the commonly applied ascorbyl palmitate. Experimental data were successfully fitted using the Peppas and Sahlin model, which accounted for a lag phase and the combined effect of Fickian diffusion and polymer relaxation. In the case of long-chain esters, the lag phase was prolonged, and the calculated effective diffusion coefficients (Deff) were lower compared to medium-chain FAAEs. Accordingly, the highest Deff value was observed for ascorbyl caprylate, being even 60 times higher than for ascorbyl palmitate. These results suggest the emerging potential of emulgel with incorporated coconut oil-derived FAAEs for efficiently delivering vitamin C into the skin.
期刊介绍:
Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.