{"title":"Kinematic analysis and advanced control of a vectored thruster based on 3RRUR parallel manipulator for micro-size AUVs","authors":"Tao Liu, Jintao Zhao, Junhao Huang","doi":"10.1017/s0263574724001280","DOIUrl":null,"url":null,"abstract":"Autonomous underwater vehicles (AUVs) have played a pivotal role in advancing ocean exploration and exploitation. However, traditional AUVs face limitations when executing missions at minimal or near-zero forward velocities due to the ineffectiveness of their control surfaces, considerably constraining their potential applications. To address this challenge, this paper introduces an innovative vectored thruster system based on a 3RRUR parallel manipulator tailored for micro-sized AUVs. The incorporation of a vectored thruster enhances the performance of micro-sized AUVs when operating at minimal and low forward speeds. A comprehensive exploration of the kinematics of the thrust-vectoring mechanism has been undertaken through theoretical analysis and experimental validation. The findings from theoretical analysis and experimental confirmation unequivocally affirm the feasibility of the devised thrust-vectoring mechanism. The precise control of the vector device is studied using Physics-informed Neural Network and Model Predictive Control (PINN-MPC). Through the adoption of this pioneering thrust-vectoring mechanism rooted in the 3RRUR parallel manipulator, AUVs can efficiently and effectively generate the requisite motion for thrust-vectoring propulsion, overcoming the limitations of traditional AUVs and expanding their potential applications across various domains.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"47 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724001280","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Autonomous underwater vehicles (AUVs) have played a pivotal role in advancing ocean exploration and exploitation. However, traditional AUVs face limitations when executing missions at minimal or near-zero forward velocities due to the ineffectiveness of their control surfaces, considerably constraining their potential applications. To address this challenge, this paper introduces an innovative vectored thruster system based on a 3RRUR parallel manipulator tailored for micro-sized AUVs. The incorporation of a vectored thruster enhances the performance of micro-sized AUVs when operating at minimal and low forward speeds. A comprehensive exploration of the kinematics of the thrust-vectoring mechanism has been undertaken through theoretical analysis and experimental validation. The findings from theoretical analysis and experimental confirmation unequivocally affirm the feasibility of the devised thrust-vectoring mechanism. The precise control of the vector device is studied using Physics-informed Neural Network and Model Predictive Control (PINN-MPC). Through the adoption of this pioneering thrust-vectoring mechanism rooted in the 3RRUR parallel manipulator, AUVs can efficiently and effectively generate the requisite motion for thrust-vectoring propulsion, overcoming the limitations of traditional AUVs and expanding their potential applications across various domains.
期刊介绍:
Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.