An Innovative Water Splitting Process for a Sustainable In Situ Hydrogen Generation–Reduction of Nitrobenzenes Catalyzed by a New Bimetallic Nanocatalyst
{"title":"An Innovative Water Splitting Process for a Sustainable In Situ Hydrogen Generation–Reduction of Nitrobenzenes Catalyzed by a New Bimetallic Nanocatalyst","authors":"Hamed Zarei, Sara Sobhani, José Miguel Sansano","doi":"10.1002/aoc.7740","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this research, bimetallic CdNi nanoparticles encapsulated in a magnetic spent coffee ground (Fe<sub>3</sub>O<sub>4</sub>@COFF/CdNi) was synthesized as a new nanocatalyst. The structural and chemical characteristics of Fe<sub>3</sub>O<sub>4</sub>@COFF/CdNi were comprehensively investigated using various techniques, including FT-IR, XRD, XPS, TEM, VSM, EDS, TGA, BET, and ICP. Through XRD, XPS analysis, TEM images, and EDS mapping, the presence of CdNi nanoalloys was conclusively established. Fe<sub>3</sub>O<sub>4</sub>@COFF/CdNi exhibited remarkable catalytic activity for the hydrogen generation from water using <i>iso</i>-propanol as a clean sacrificial agent. The high catalytic performance of Fe<sub>3</sub>O<sub>4</sub>@COFF/CdNi was attributed to the synergistic cooperative effect of Cd and Ni within CdNi nanoalloys. Interestingly, this process was performed for the in situ generated hydrogen from water to reduce a range of nitrobenzenes simultaneously into the corresponding anilines in high yields (93%–98%). The magnetic and hydrophilic characteristics of Fe<sub>3</sub>O<sub>4</sub>@COFF/CdNi facilitated its reusability over five runs. Using water as the most abundant hydrogen source, for the first time for in situ hydrogen generation–reduction of nitrobenzenes without demanding on external light sources or power supplies can be mentioned as a significant milestone of this field of study.</p>\n </div>","PeriodicalId":8344,"journal":{"name":"Applied Organometallic Chemistry","volume":"38 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aoc.7740","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, bimetallic CdNi nanoparticles encapsulated in a magnetic spent coffee ground (Fe3O4@COFF/CdNi) was synthesized as a new nanocatalyst. The structural and chemical characteristics of Fe3O4@COFF/CdNi were comprehensively investigated using various techniques, including FT-IR, XRD, XPS, TEM, VSM, EDS, TGA, BET, and ICP. Through XRD, XPS analysis, TEM images, and EDS mapping, the presence of CdNi nanoalloys was conclusively established. Fe3O4@COFF/CdNi exhibited remarkable catalytic activity for the hydrogen generation from water using iso-propanol as a clean sacrificial agent. The high catalytic performance of Fe3O4@COFF/CdNi was attributed to the synergistic cooperative effect of Cd and Ni within CdNi nanoalloys. Interestingly, this process was performed for the in situ generated hydrogen from water to reduce a range of nitrobenzenes simultaneously into the corresponding anilines in high yields (93%–98%). The magnetic and hydrophilic characteristics of Fe3O4@COFF/CdNi facilitated its reusability over five runs. Using water as the most abundant hydrogen source, for the first time for in situ hydrogen generation–reduction of nitrobenzenes without demanding on external light sources or power supplies can be mentioned as a significant milestone of this field of study.
期刊介绍:
All new compounds should be satisfactorily identified and proof of their structure given according to generally accepted standards. Structural reports, such as papers exclusively dealing with synthesis and characterization, analytical techniques, or X-ray diffraction studies of metal-organic or organometallic compounds will not be considered. The editors reserve the right to refuse without peer review any manuscript that does not comply with the aims and scope of the journal. Applied Organometallic Chemistry publishes Full Papers, Reviews, Mini Reviews and Communications of scientific research in all areas of organometallic and metal-organic chemistry involving main group metals, transition metals, lanthanides and actinides. All contributions should contain an explicit application of novel compounds, for instance in materials science, nano science, catalysis, chemical vapour deposition, metal-mediated organic synthesis, polymers, bio-organometallics, metallo-therapy, metallo-diagnostics and medicine. Reviews of books covering aspects of the fields of focus are also published.