Liquid-encapsulated quantum dot for enhanced UV and thermal stability of quantum dot color conversion films

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ronghuan Liu, Fan Fang, Pai Liu, Xijian Duan, Kai Wang, Xiao Wei Sun
{"title":"Liquid-encapsulated quantum dot for enhanced UV and thermal stability of quantum dot color conversion films","authors":"Ronghuan Liu, Fan Fang, Pai Liu, Xijian Duan, Kai Wang, Xiao Wei Sun","doi":"10.1007/s12274-024-6971-0","DOIUrl":null,"url":null,"abstract":"<p>Encapsulation is a widely recognized method for enhancing the stability of colloidal quantum dots (CQDs). However, traditional encapsulation methods for solid-state materials expose encapsulated CQDs to risks such as ligand loss and poor dispersion. Additionally, these encapsulated CQDs still face the risk of aging due to surface ligand bond breakage under high-energy radiation. In this study, we found that quantum dots in solution exhibited enhanced ultraviolet (UV) tolerance compared to their counterparts in solid form under an inert atmosphere. We attribute this enhancement to improved ligand retention and self-healing of quantum dots in solution. Herein, we introduce a novel method for fabricating liquid-encapsulated quantum dot (LEQD) color conversion films. This technique leverages the self-healing capability of ligands in liquid-state quantum dots to enhance the UV and thermal stability of the quantum dot color conversion films. Experimental results demonstrate that LEQD films exhibit better resistance to UV radiation and high temperatures than solid-encapsulated quantum dot (SEQD) color conversion films. After 400 h of exposure to 100 mW blue light-emitting device (LED) light at 60 °C and 90% humidity, the brightness of LEQD film retained 90% of its initial level. This liquid-state quantum dot encapsulation approach offers a promising pathway for developing more durable quantum dot color conversion films.\n</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"107 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6971-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Encapsulation is a widely recognized method for enhancing the stability of colloidal quantum dots (CQDs). However, traditional encapsulation methods for solid-state materials expose encapsulated CQDs to risks such as ligand loss and poor dispersion. Additionally, these encapsulated CQDs still face the risk of aging due to surface ligand bond breakage under high-energy radiation. In this study, we found that quantum dots in solution exhibited enhanced ultraviolet (UV) tolerance compared to their counterparts in solid form under an inert atmosphere. We attribute this enhancement to improved ligand retention and self-healing of quantum dots in solution. Herein, we introduce a novel method for fabricating liquid-encapsulated quantum dot (LEQD) color conversion films. This technique leverages the self-healing capability of ligands in liquid-state quantum dots to enhance the UV and thermal stability of the quantum dot color conversion films. Experimental results demonstrate that LEQD films exhibit better resistance to UV radiation and high temperatures than solid-encapsulated quantum dot (SEQD) color conversion films. After 400 h of exposure to 100 mW blue light-emitting device (LED) light at 60 °C and 90% humidity, the brightness of LEQD film retained 90% of its initial level. This liquid-state quantum dot encapsulation approach offers a promising pathway for developing more durable quantum dot color conversion films.

Abstract Image

液态封装量子点可增强量子点色彩转换薄膜的紫外线和热稳定性
封装是一种公认的提高胶体量子点(CQDs)稳定性的方法。然而,固态材料的传统封装方法会使封装的 CQDs 面临配体损失和分散性差等风险。此外,这些封装的 CQDs 还面临着在高能辐射下因表面配体键断裂而老化的风险。在这项研究中,我们发现在惰性气氛下,溶液中的量子点与固体形式的量子点相比,表现出更强的紫外线(UV)耐受性。我们将这种增强归因于溶液中量子点的配体保留和自我修复能力的提高。在此,我们介绍了一种制造液态封装量子点(LEQD)色彩转换薄膜的新方法。该技术利用液态量子点中配体的自修复能力,提高了量子点色彩转换薄膜的紫外线和热稳定性。实验结果表明,与固态封装量子点(SEQD)色彩转换薄膜相比,液态量子点薄膜具有更好的抗紫外线辐射和耐高温性能。在 60 °C 和 90% 湿度条件下,将 LEQD 薄膜置于 100 mW 蓝色发光器件 (LED) 灯光下 400 小时后,其亮度仍保持在初始水平的 90%。这种液态量子点封装方法为开发更耐用的量子点色彩转换薄膜提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信