Piotr Magierski, Andrea Barresi, Andrzej Makowski, Daniel Pcak, Gabriel Wlazłowski
{"title":"Quantum vortices in fermionic superfluids: from ultracold atoms to neutron stars.","authors":"Piotr Magierski, Andrea Barresi, Andrzej Makowski, Daniel Pcak, Gabriel Wlazłowski","doi":"10.1140/epja/s10050-024-01378-4","DOIUrl":null,"url":null,"abstract":"<div><p>Superfluid dilute neutron matter and ultracold gas, close to the unitary regime, exhibit several similarities. Therefore, to a certain extent, fermionic ultracold gases may serve as emulators of dilute neutron matter, which forms the inner crust of neutron stars and is not directly accessed experimentally. Quantum vortices are one of the most significant properties of neutron superfluid, essential for comprehending neutron stars’ dynamics. The structure and dynamics of quantum vortices as a function of pairing correlations’ strength are being investigated experimentally and theoretically in ultracold gases. Certain aspects of these studies are relevant to neutron stars. We provide an overview of the characteristics of quantum vortices in s-wave-type fermionic and electrically neutral superfluids. The main focus is on the dynamics of fermionic vortices and their intrinsic structure.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":"60 9","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epja/s10050-024-01378-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epja/s10050-024-01378-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Superfluid dilute neutron matter and ultracold gas, close to the unitary regime, exhibit several similarities. Therefore, to a certain extent, fermionic ultracold gases may serve as emulators of dilute neutron matter, which forms the inner crust of neutron stars and is not directly accessed experimentally. Quantum vortices are one of the most significant properties of neutron superfluid, essential for comprehending neutron stars’ dynamics. The structure and dynamics of quantum vortices as a function of pairing correlations’ strength are being investigated experimentally and theoretically in ultracold gases. Certain aspects of these studies are relevant to neutron stars. We provide an overview of the characteristics of quantum vortices in s-wave-type fermionic and electrically neutral superfluids. The main focus is on the dynamics of fermionic vortices and their intrinsic structure.
期刊介绍:
Hadron Physics
Hadron Structure
Hadron Spectroscopy
Hadronic and Electroweak Interactions of Hadrons
Nonperturbative Approaches to QCD
Phenomenological Approaches to Hadron Physics
Nuclear and Quark Matter
Heavy-Ion Collisions
Phase Diagram of the Strong Interaction
Hard Probes
Quark-Gluon Plasma and Hadronic Matter
Relativistic Transport and Hydrodynamics
Compact Stars
Nuclear Physics
Nuclear Structure and Reactions
Few-Body Systems
Radioactive Beams
Electroweak Interactions
Nuclear Astrophysics
Article Categories
Letters (Open Access)
Regular Articles
New Tools and Techniques
Reviews.