Design of a LiDAR ranging system based on dual-frequency phase modulation

IF 1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuanhui Mu, Shanshan Feng, Ruzhang Liu, Luyin Liu, Shuying Wang, Enlin Cai
{"title":"Design of a LiDAR ranging system based on dual-frequency phase modulation","authors":"Yuanhui Mu,&nbsp;Shanshan Feng,&nbsp;Ruzhang Liu,&nbsp;Luyin Liu,&nbsp;Shuying Wang,&nbsp;Enlin Cai","doi":"10.1002/mop.34319","DOIUrl":null,"url":null,"abstract":"<p>Phase-based light detection and ranging (LiDAR) technology is emerging in the fields of industrial mapping, autonomous driving, and robotics, but the traditional phase-based ranging technology generally suffers from the problem that the ranging accuracy is inversely proportional to the measurement range under a single measurement frequency, the system structure is complicated, and the performance is unstable, and so forth. In this article, a new type of LiDAR system design based on phase ranging is proposed. The system adopts a 100 + 1 MHz double measuring ruler modulation light source, uses the laser to control the phase difference detection method of the same frequency reference, optimizes the structure of the transceiver optical system, and the design of AD8302 high-resolution signal phase discriminator circuit, builds a high-precision laser ranging system, and carries out the experiments on the measurement accuracy of the LiDAR ranging system. The experimental results show that the measurement accuracy of the system is millimeter level, which is simple, practical, and can meet the needs of a wide range of practical applications. This study provides a feasible and innovative solution for LiDAR technology in high-precision distance measurement.</p>","PeriodicalId":18562,"journal":{"name":"Microwave and Optical Technology Letters","volume":"66 9","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microwave and Optical Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mop.34319","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Phase-based light detection and ranging (LiDAR) technology is emerging in the fields of industrial mapping, autonomous driving, and robotics, but the traditional phase-based ranging technology generally suffers from the problem that the ranging accuracy is inversely proportional to the measurement range under a single measurement frequency, the system structure is complicated, and the performance is unstable, and so forth. In this article, a new type of LiDAR system design based on phase ranging is proposed. The system adopts a 100 + 1 MHz double measuring ruler modulation light source, uses the laser to control the phase difference detection method of the same frequency reference, optimizes the structure of the transceiver optical system, and the design of AD8302 high-resolution signal phase discriminator circuit, builds a high-precision laser ranging system, and carries out the experiments on the measurement accuracy of the LiDAR ranging system. The experimental results show that the measurement accuracy of the system is millimeter level, which is simple, practical, and can meet the needs of a wide range of practical applications. This study provides a feasible and innovative solution for LiDAR technology in high-precision distance measurement.

设计基于双频相位调制的激光雷达测距系统
基于相位的光探测与测距(LiDAR)技术正在工业测绘、自动驾驶和机器人等领域兴起,但传统的基于相位的测距技术普遍存在单一测量频率下测距精度与测量范围成反比、系统结构复杂、性能不稳定等问题。本文提出了一种基于相位测距的新型激光雷达系统设计方案。该系统采用 100 + 1 MHz 双测尺调制光源,利用激光器控制同频基准的相位差检测方法,优化了收发光学系统结构,并设计了 AD8302 高分辨率信号鉴相器电路,构建了高精度激光测距系统,并对激光雷达测距系统的测量精度进行了实验。实验结果表明,该系统的测量精度达到毫米级,简单实用,能满足广泛的实际应用需求。这项研究为激光雷达技术在高精度距离测量中的应用提供了一种可行的创新解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microwave and Optical Technology Letters
Microwave and Optical Technology Letters 工程技术-工程:电子与电气
CiteScore
3.40
自引率
20.00%
发文量
371
审稿时长
4.3 months
期刊介绍: Microwave and Optical Technology Letters provides quick publication (3 to 6 month turnaround) of the most recent findings and achievements in high frequency technology, from RF to optical spectrum. The journal publishes original short papers and letters on theoretical, applied, and system results in the following areas. - RF, Microwave, and Millimeter Waves - Antennas and Propagation - Submillimeter-Wave and Infrared Technology - Optical Engineering All papers are subject to peer review before publication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信