Soil Salinity Mapping of Plowed Agriculture Lands Combining Radar Sentinel-1 and Optical Sentinel-2 with Topographic Data in Machine Learning Models

IF 4.2 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES
Remote Sensing Pub Date : 2024-09-18 DOI:10.3390/rs16183456
Diego Tola, Frédéric Satgé, Ramiro Pillco Zolá, Humberto Sainz, Bruno Condori, Roberto Miranda, Elizabeth Yujra, Jorge Molina-Carpio, Renaud Hostache, Raúl Espinoza-Villar
{"title":"Soil Salinity Mapping of Plowed Agriculture Lands Combining Radar Sentinel-1 and Optical Sentinel-2 with Topographic Data in Machine Learning Models","authors":"Diego Tola, Frédéric Satgé, Ramiro Pillco Zolá, Humberto Sainz, Bruno Condori, Roberto Miranda, Elizabeth Yujra, Jorge Molina-Carpio, Renaud Hostache, Raúl Espinoza-Villar","doi":"10.3390/rs16183456","DOIUrl":null,"url":null,"abstract":"This study assesses the relative performance of Sentinel-1 and -2 and their combination with topographic information for plow agricultural land soil salinity mapping. A learning database made of 255 soil samples’ electrical conductivity (EC) along with corresponding radar (R), optical (O), and topographic (T) information derived from Sentinel-2 (S2), Sentinel-1 (S1), and the SRTM digital elevation model, respectively, was used to train four machine learning models (Decision tree—DT, Random Forest—RF, Gradient Boosting—GB, Extreme Gradient Boosting—XGB). Each model was separately trained/validated for four scenarios based on four combinations of R, O, and T (R, O, R+O, R+O+T), with and without feature selection. The Recursive Feature Elimination with k-fold cross validation (RFEcv 10-fold) and the Variance Inflation Factor (VIF) were used for the feature selection process to minimize multicollinearity by selecting the most relevant features. The most reliable salinity estimates are obtained for the R+O+T scenario, considering the feature selection process, with R2 of 0.73, 0.74, 0.75, and 0.76 for DT, GB, RF, and XGB, respectively. Conversely, models based on R information led to unreliable soil salinity estimates due to the saturation of the C-band signal in plowed lands.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"3 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183456","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study assesses the relative performance of Sentinel-1 and -2 and their combination with topographic information for plow agricultural land soil salinity mapping. A learning database made of 255 soil samples’ electrical conductivity (EC) along with corresponding radar (R), optical (O), and topographic (T) information derived from Sentinel-2 (S2), Sentinel-1 (S1), and the SRTM digital elevation model, respectively, was used to train four machine learning models (Decision tree—DT, Random Forest—RF, Gradient Boosting—GB, Extreme Gradient Boosting—XGB). Each model was separately trained/validated for four scenarios based on four combinations of R, O, and T (R, O, R+O, R+O+T), with and without feature selection. The Recursive Feature Elimination with k-fold cross validation (RFEcv 10-fold) and the Variance Inflation Factor (VIF) were used for the feature selection process to minimize multicollinearity by selecting the most relevant features. The most reliable salinity estimates are obtained for the R+O+T scenario, considering the feature selection process, with R2 of 0.73, 0.74, 0.75, and 0.76 for DT, GB, RF, and XGB, respectively. Conversely, models based on R information led to unreliable soil salinity estimates due to the saturation of the C-band signal in plowed lands.
将雷达哨兵-1 和光学哨兵-2 与机器学习模型中的地形数据相结合绘制耕地土壤盐度图
本研究评估了哨兵-1 和哨兵-2 的相对性能及其与地形信息的结合在耕地土壤盐度绘图中的应用。由 255 个土壤样本的导电率(EC)以及相应的雷达(R)、光学(O)和地形(T)信息组成的学习数据库分别来自 Sentinel-2(S2)、Sentinel-1(S1)和 SRTM 数字高程模型,用于训练四个机器学习模型(决策树-DT、随机森林-RF、梯度提升-GB、极端梯度提升-XGB)。每个模型都根据 R、O 和 T 的四种组合(R、O、R+O、R+O+T),在有特征选择和无特征选择的情况下,针对四种场景分别进行了训练/验证。在特征选择过程中使用了 k 倍交叉验证递归特征消除法(RFEcv 10-fold)和方差膨胀因子(VIF),通过选择最相关的特征来最大限度地减少多重共线性。考虑到特征选择过程,R+O+T 方案的盐度估计值最为可靠,DT、GB、RF 和 XGB 的 R2 分别为 0.73、0.74、0.75 和 0.76。相反,由于耕地中 C 波段信号饱和,基于 R 信息的模型导致土壤盐度估算不可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Remote Sensing
Remote Sensing REMOTE SENSING-
CiteScore
8.30
自引率
24.00%
发文量
5435
审稿时长
20.66 days
期刊介绍: Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信