Xiaojuan Wang, Bobo Xi, Haitao Xu, Tie Zheng, Changbin Xue
{"title":"AgeDETR: Attention-Guided Efficient DETR for Space Target Detection","authors":"Xiaojuan Wang, Bobo Xi, Haitao Xu, Tie Zheng, Changbin Xue","doi":"10.3390/rs16183452","DOIUrl":null,"url":null,"abstract":"Recent advancements in space exploration technology have significantly increased the number of diverse satellites in orbit. This surge in space-related information has posed considerable challenges in developing space target surveillance and situational awareness systems. However, existing detection algorithms face obstacles such as complex space backgrounds, varying illumination conditions, and diverse target sizes. To address these challenges, we propose an innovative end-to-end Attention-Guided Encoder DETR (AgeDETR) model, since artificial intelligence technology has progressed swiftly in recent years. Specifically, AgeDETR integrates Efficient Multi-Scale Attention (EMA) Enhanced FasterNet block (EF-Block) within a ResNet18 (EF-ResNet18) backbone. This integration enhances feature extraction and computational efficiency, providing a robust foundation for accurately identifying space targets. Additionally, we introduce the Attention-Guided Feature Enhancement (AGFE) module, which leverages self-attention and channel attention mechanisms to effectively extract and reinforce salient target features. Furthermore, the Attention-Guided Feature Fusion (AGFF) module optimizes multi-scale feature integration and produces highly expressive feature representations, which significantly improves recognition accuracy. The proposed AgeDETR framework achieves outstanding performance metrics, i.e., 97.9% in mAP0.5 and 85.2% in mAP0.5:0.95, on the SPARK2022 dataset, outperforming existing detectors and demonstrating superior performance in space target detection.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"105 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183452","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in space exploration technology have significantly increased the number of diverse satellites in orbit. This surge in space-related information has posed considerable challenges in developing space target surveillance and situational awareness systems. However, existing detection algorithms face obstacles such as complex space backgrounds, varying illumination conditions, and diverse target sizes. To address these challenges, we propose an innovative end-to-end Attention-Guided Encoder DETR (AgeDETR) model, since artificial intelligence technology has progressed swiftly in recent years. Specifically, AgeDETR integrates Efficient Multi-Scale Attention (EMA) Enhanced FasterNet block (EF-Block) within a ResNet18 (EF-ResNet18) backbone. This integration enhances feature extraction and computational efficiency, providing a robust foundation for accurately identifying space targets. Additionally, we introduce the Attention-Guided Feature Enhancement (AGFE) module, which leverages self-attention and channel attention mechanisms to effectively extract and reinforce salient target features. Furthermore, the Attention-Guided Feature Fusion (AGFF) module optimizes multi-scale feature integration and produces highly expressive feature representations, which significantly improves recognition accuracy. The proposed AgeDETR framework achieves outstanding performance metrics, i.e., 97.9% in mAP0.5 and 85.2% in mAP0.5:0.95, on the SPARK2022 dataset, outperforming existing detectors and demonstrating superior performance in space target detection.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.