{"title":"High-Efficiency Forward Modeling of Gravitational Fields in Spherical Harmonic Domain with Application to Lunar Topography Correction","authors":"Guangdong Zhao, Shengxian Liang","doi":"10.3390/rs16183414","DOIUrl":null,"url":null,"abstract":"Gravity forward modeling as a basic tool has been widely used for topography correction and 3D density inversion. The source region is usually discretized into tesseroids (i.e., spherical prisms) to consider the influence of the curvature of planets in global or large-scale problems. Traditional gravity forward modeling methods in spherical coordinates, including the Taylor expansion and Gaussian–Legendre quadrature, are all based on spatial domains, which mostly have low computational efficiency. This study proposes a high-efficiency forward modeling method of gravitational fields in the spherical harmonic domain, in which the gravity anomalies and gradient tensors can be expressed as spherical harmonic synthesis forms of spherical harmonic coefficients of 3D density distribution. A homogeneous spherical shell model is used to test its effectiveness compared with traditional spatial domain methods. It demonstrates that the computational efficiency of the proposed spherical harmonic domain method is improved by four orders of magnitude with a similar level of computational accuracy compared with the optimized 3D GLQ method. The test also shows that the computational time of the proposed method is not affected by the observation height. Finally, the proposed forward method is applied to the topography correction of the Moon. The results show that the gravity response of the topography obtained with our method is close to that of the optimized 3D GLQ method and is also consistent with previous results.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"16 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183414","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Gravity forward modeling as a basic tool has been widely used for topography correction and 3D density inversion. The source region is usually discretized into tesseroids (i.e., spherical prisms) to consider the influence of the curvature of planets in global or large-scale problems. Traditional gravity forward modeling methods in spherical coordinates, including the Taylor expansion and Gaussian–Legendre quadrature, are all based on spatial domains, which mostly have low computational efficiency. This study proposes a high-efficiency forward modeling method of gravitational fields in the spherical harmonic domain, in which the gravity anomalies and gradient tensors can be expressed as spherical harmonic synthesis forms of spherical harmonic coefficients of 3D density distribution. A homogeneous spherical shell model is used to test its effectiveness compared with traditional spatial domain methods. It demonstrates that the computational efficiency of the proposed spherical harmonic domain method is improved by four orders of magnitude with a similar level of computational accuracy compared with the optimized 3D GLQ method. The test also shows that the computational time of the proposed method is not affected by the observation height. Finally, the proposed forward method is applied to the topography correction of the Moon. The results show that the gravity response of the topography obtained with our method is close to that of the optimized 3D GLQ method and is also consistent with previous results.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.