Gislayne Farias Valente, Gabriel Araújo e Silva Ferraz, Felipe Schwerz, Rafael de Oliveira Faria, Felipe Augusto Fernandes, Diego Bedin Marin
{"title":"Remotely Piloted Aircraft for Evaluating the Impact of Frost in Coffee Plants: Interactions between Plant Age and Topography","authors":"Gislayne Farias Valente, Gabriel Araújo e Silva Ferraz, Felipe Schwerz, Rafael de Oliveira Faria, Felipe Augusto Fernandes, Diego Bedin Marin","doi":"10.3390/rs16183467","DOIUrl":null,"url":null,"abstract":"An accurate assessment of frost damage in coffee plantations can help develop effective agronomic practices to cope with extreme weather events. Remotely piloted aircrafts (RPA) have emerged as promising tools to evaluate the impacts caused by frost on coffee production. The objective was to evaluate the impact of frost on coffee plants, using vegetation indices, in plantations of different ages and areas of climatic risks. We evaluated two coffee plantations located in Brazil, aged one and two years on the date of frost occurrence. Multispectral images were collected by a remotely piloted aircraft, three days after the occurrence of frost in July 2021. The relationship between frost damage and these vegetation indices was estimated by Pearson’s correlation using simple and multiple linear regression. The results showed that variations in frost damage were observed based on planting age and topography conditions. The use of PRA was efficient in evaluating frost damage in both young and adult plants, indicating its potential and application in different situations. The vegetation index MSR and MCARI2 indices were effective in assessing damage in one-year-old coffee plantations, whereas the SAVI, MCARI1, and MCARI2 indices were more suitable for visualizing frost damage in two-year-old coffee plantations.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"46 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183467","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
An accurate assessment of frost damage in coffee plantations can help develop effective agronomic practices to cope with extreme weather events. Remotely piloted aircrafts (RPA) have emerged as promising tools to evaluate the impacts caused by frost on coffee production. The objective was to evaluate the impact of frost on coffee plants, using vegetation indices, in plantations of different ages and areas of climatic risks. We evaluated two coffee plantations located in Brazil, aged one and two years on the date of frost occurrence. Multispectral images were collected by a remotely piloted aircraft, three days after the occurrence of frost in July 2021. The relationship between frost damage and these vegetation indices was estimated by Pearson’s correlation using simple and multiple linear regression. The results showed that variations in frost damage were observed based on planting age and topography conditions. The use of PRA was efficient in evaluating frost damage in both young and adult plants, indicating its potential and application in different situations. The vegetation index MSR and MCARI2 indices were effective in assessing damage in one-year-old coffee plantations, whereas the SAVI, MCARI1, and MCARI2 indices were more suitable for visualizing frost damage in two-year-old coffee plantations.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.