Third harmonic of the dynamic magnetic susceptibility of a concentrated ferrofluid: Numerical calculation and simple approximation formula

IF 2.4 3区 物理与天体物理 Q1 Mathematics
Michael S. Rusanov, Vladimir S. Zverev, Ekaterina A. Elfimova
{"title":"Third harmonic of the dynamic magnetic susceptibility of a concentrated ferrofluid: Numerical calculation and simple approximation formula","authors":"Michael S. Rusanov, Vladimir S. Zverev, Ekaterina A. Elfimova","doi":"10.1103/physreve.110.034605","DOIUrl":null,"url":null,"abstract":"Information about the nonlinear magnetic response of dispersions of magnetic particles is the basis for biomedical applications. In this paper, using analytical and numerical methods, the third harmonic of the dynamic susceptibility of an ensemble of moving magnetic particles in an ac magnetic field with an arbitrary amplitude is studied, taking into account interparticle interactions. A simple approximation formula is proposed to predict the third harmonic as a function of two parameters: the Langevin susceptibility <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>χ</mi><mi>L</mi></msub></math>, which is used to estimate the particle dipole-dipole interactions, and the Langevin parameter <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ξ</mi></math>, which represents the ratio of the energy of the magnetic moment interacting with the magnetic field to the thermal energy. The derived approximation formula corresponds with the known single-particle theories in the limit case of a small particle's concentration and is valid for concentrated dispersions of magnetic particles (with the Langevin susceptibility up to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi>χ</mi><mi>L</mi></msub><mo>≤</mo><mn>3</mn></mrow></math>) in high-amplitude ac fields (with the Langevin parameter up to <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>ξ</mi><mo>≤</mo><mn>10</mn></mrow></math>).","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":"34 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.034605","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Information about the nonlinear magnetic response of dispersions of magnetic particles is the basis for biomedical applications. In this paper, using analytical and numerical methods, the third harmonic of the dynamic susceptibility of an ensemble of moving magnetic particles in an ac magnetic field with an arbitrary amplitude is studied, taking into account interparticle interactions. A simple approximation formula is proposed to predict the third harmonic as a function of two parameters: the Langevin susceptibility χL, which is used to estimate the particle dipole-dipole interactions, and the Langevin parameter ξ, which represents the ratio of the energy of the magnetic moment interacting with the magnetic field to the thermal energy. The derived approximation formula corresponds with the known single-particle theories in the limit case of a small particle's concentration and is valid for concentrated dispersions of magnetic particles (with the Langevin susceptibility up to χL3) in high-amplitude ac fields (with the Langevin parameter up to ξ10).

Abstract Image

浓缩铁流体动态磁感应强度的三次谐波:数值计算和简单近似公式
磁性粒子分散体的非线性磁响应信息是生物医学应用的基础。本文采用分析和数值方法,研究了在任意振幅交流磁场中运动磁性粒子集合体动态磁感应强度的三次谐波,并考虑了粒子间的相互作用。提出了一个简单的近似公式来预测三次谐波作为两个参数的函数:用于估计粒子偶极-偶极相互作用的朗格文感应强度 χL 和代表与磁场相互作用的磁矩能量与热能之比的朗格文参数 ξ。推导出的近似公式与已知的小粒子浓度极限情况下的单粒子理论相对应,并适用于高振幅交流磁场(朗格文参数ξ≤10)中的磁性粒子集中分散(朗格文感应强度最高为χL≤3)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信