Galen O’Neil, Daniel Swetz, Randy Doriese, Dan Schmidt, Leila Vale, Joel Weber, Robinjeet Singh, Mark Keller, Michael Vissers, Kelsey Morgan, John Mates, Avirup Roy, Joel Ullom
{"title":"Flexible Superconducting Wiring for Integration with Low-Temperature Detector and Readout Fabrication","authors":"Galen O’Neil, Daniel Swetz, Randy Doriese, Dan Schmidt, Leila Vale, Joel Weber, Robinjeet Singh, Mark Keller, Michael Vissers, Kelsey Morgan, John Mates, Avirup Roy, Joel Ullom","doi":"10.1007/s10909-024-03209-8","DOIUrl":null,"url":null,"abstract":"<div><p>We present a method of creating high-density superconducting flexible wiring on flexible thin silicon substrates. The flexible wiring, called <i>SOI flex</i>, is created by depositing superconducting wiring on a silicon-on-insulator (SOI) wafer, selectively etching away the thicker silicon section <i>handle</i> layer, and bending the thinner silicon <i>device</i> layer. We show measurements of superconducting transition temperature and critical current for Mo, Nb, and Al on SOI flex. We discuss the expected advantages of SOI flex for low-temperature detector applications, as well as the role of stress and strain in bent silicon and niobium.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":"217 Part 4","pages":"426 - 433"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-024-03209-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03209-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We present a method of creating high-density superconducting flexible wiring on flexible thin silicon substrates. The flexible wiring, called SOI flex, is created by depositing superconducting wiring on a silicon-on-insulator (SOI) wafer, selectively etching away the thicker silicon section handle layer, and bending the thinner silicon device layer. We show measurements of superconducting transition temperature and critical current for Mo, Nb, and Al on SOI flex. We discuss the expected advantages of SOI flex for low-temperature detector applications, as well as the role of stress and strain in bent silicon and niobium.
我们介绍了一种在柔性薄硅衬底上制作高密度超导柔性布线的方法。这种称为 SOI 柔性线路的柔性线路是通过在绝缘体硅(SOI)晶片上沉积超导线路,选择性地蚀刻掉较厚的硅部分手柄层,并弯曲较薄的硅器件层而制成的。我们展示了 SOI 柔性材料上 Mo、Nb 和 Al 的超导转变温度和临界电流测量结果。我们讨论了 SOI 柔性材料在低温探测器应用中的预期优势,以及应力和应变在弯曲硅和铌中的作用。
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.