On the Cross-Correlation of Golomb Costas Permutations

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Huaning Liu;Arne Winterhof
{"title":"On the Cross-Correlation of Golomb Costas Permutations","authors":"Huaning Liu;Arne Winterhof","doi":"10.1109/TIT.2024.3460189","DOIUrl":null,"url":null,"abstract":"In the most interesting case of safe prime powers q, Gómez and Winterhof showed that a subfamily of the family of Golomb Costas permutations of \n<inline-formula> <tex-math>$\\{1,2,\\ldots,q-2\\}$ </tex-math></inline-formula>\n of size \n<inline-formula> <tex-math>$\\varphi (q-1)$ </tex-math></inline-formula>\n has maximal cross-correlation of order of magnitude at most \n<inline-formula> <tex-math>$q^{1/2}$ </tex-math></inline-formula>\n. In this paper we study a larger family of Golomb Costas permutations and prove a weaker bound on its maximal cross-correlation. Considering the whole family of Golomb Costas permutations we show that large cross-correlations are very rare. Finally, we collect several conditions for a small cross-correlation of two Costas permutations. Our main tools are the Weil bound and the Szemerédi-Trotter theorem for finite fields.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 11","pages":"7848-7852"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10680069/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In the most interesting case of safe prime powers q, Gómez and Winterhof showed that a subfamily of the family of Golomb Costas permutations of $\{1,2,\ldots,q-2\}$ of size $\varphi (q-1)$ has maximal cross-correlation of order of magnitude at most $q^{1/2}$ . In this paper we study a larger family of Golomb Costas permutations and prove a weaker bound on its maximal cross-correlation. Considering the whole family of Golomb Costas permutations we show that large cross-correlations are very rare. Finally, we collect several conditions for a small cross-correlation of two Costas permutations. Our main tools are the Weil bound and the Szemerédi-Trotter theorem for finite fields.
关于戈洛姆-科斯塔斯排列的交叉相关性
在最有趣的安全素数 q 的情况下,戈麦斯和温特霍夫证明了大小为 $\varphi (q-1)$ 的 ${1,2,\ldots,q-2\}$ 的戈隆-科斯塔斯排列族的一个子族具有数量级最多为 $q^{1/2}$ 的最大交叉相关性。 在本文中,我们研究了一个更大的戈隆-科斯塔斯排列族,并证明了其最大交叉相关性的一个较弱约束。考虑到整个哥伦布-科斯塔斯排列族,我们证明大的交叉相关非常罕见。最后,我们收集了两个科斯塔斯排列的小交叉相关性的几个条件。我们的主要工具是有限域的韦尔约束和塞梅尔迪-特罗特定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信