Development of a Novel Transonic Fan Casing Making Use of Rapid Prototyping and Additive Manufacturing

Q1 Mathematics
Andrew Cusator, Nicole L. Key
{"title":"Development of a Novel Transonic Fan Casing Making Use of Rapid Prototyping and Additive Manufacturing","authors":"Andrew Cusator, Nicole L. Key","doi":"10.3390/app14188400","DOIUrl":null,"url":null,"abstract":"Additive manufacturing (AM) presents significant cost savings and lead time reductions because of features inherent to the manufacturing process. The technology lends itself to rapid prototyping due to the streamlined workflow of quickly implementing design changes. Compared to traditional machining, AM techniques are simpler in execution for design engineers because they do not require detailed engineering drawings and they typically make use of the nominal geometry in computer models. A novel transonic fan casing assembly has been developed that makes use of AM inserts surrounding the rotor to provide an opportunity to cost-effectively change the corresponding flowpath. The rapid prototyping design philosophy developed from this work will allow for numerous experimental studies into the effects that different design parameters of casing geometries have on fan aerodynamic performance. A fan stage representative of a small turbofan engine was successfully tested with smooth-walled, additively manufactured inserts as a baseline case for future configurations. Before installing the 3D printed casing assembly, computational thermal stress analysis was performed to reduce the risk in implementation due to the demanding environment associated with the rotor. AM components and materials typically have nonlinear mechanical properties, adding to the complexity of the structural analysis. As part of the research, steady aerodynamic performance was measured over the entire relevant operating range of the fan.","PeriodicalId":8224,"journal":{"name":"Applied Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14188400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Additive manufacturing (AM) presents significant cost savings and lead time reductions because of features inherent to the manufacturing process. The technology lends itself to rapid prototyping due to the streamlined workflow of quickly implementing design changes. Compared to traditional machining, AM techniques are simpler in execution for design engineers because they do not require detailed engineering drawings and they typically make use of the nominal geometry in computer models. A novel transonic fan casing assembly has been developed that makes use of AM inserts surrounding the rotor to provide an opportunity to cost-effectively change the corresponding flowpath. The rapid prototyping design philosophy developed from this work will allow for numerous experimental studies into the effects that different design parameters of casing geometries have on fan aerodynamic performance. A fan stage representative of a small turbofan engine was successfully tested with smooth-walled, additively manufactured inserts as a baseline case for future configurations. Before installing the 3D printed casing assembly, computational thermal stress analysis was performed to reduce the risk in implementation due to the demanding environment associated with the rotor. AM components and materials typically have nonlinear mechanical properties, adding to the complexity of the structural analysis. As part of the research, steady aerodynamic performance was measured over the entire relevant operating range of the fan.
利用快速成型和增材制造技术开发新型跨音速风扇外壳
快速成型制造(AM)因其制造工艺的固有特点,可显著节约成本并缩短交付周期。由于简化了快速更改设计的工作流程,该技术适合快速原型制造。与传统加工相比,AM 技术无需详细的工程图纸,而且通常利用计算机模型中的标称几何形状,因此对于设计工程师来说执行起来更简单。我们开发了一种新型的跨音速风扇外壳组件,利用围绕转子的 AM 插件,以经济有效的方式改变相应的流道。根据这项工作开发的快速原型设计理念,可以对不同设计参数的外壳几何形状对风扇空气动力性能的影响进行大量实验研究。作为未来配置的基线案例,使用光滑壁面的增材制造嵌入件成功测试了小型涡扇发动机的风扇级。在安装三维打印外壳组件之前,进行了计算热应力分析,以降低由于转子所处的苛刻环境而造成的实施风险。AM 组件和材料通常具有非线性机械特性,增加了结构分析的复杂性。作为研究的一部分,对风扇在整个相关工作范围内的稳定空气动力性能进行了测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Sciences
Applied Sciences Mathematics-Applied Mathematics
CiteScore
6.40
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊介绍: APPS is an international journal. APPS covers a wide spectrum of pure and applied mathematics in science and technology, promoting especially papers presented at Carpato-Balkan meetings. The Editorial Board of APPS takes a very active role in selecting and refereeing papers, ensuring the best quality of contemporary mathematics and its applications. APPS is abstracted in Zentralblatt für Mathematik. The APPS journal uses Double blind peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信