Mahsa Sadat Sarmalek, Mehdi Adelifard, Seyed Ahmad Nabavi Amri
{"title":"Comparative study of the structural, optical, and electrochemical properties of γ-Ga2O3 synthesized by microwave hydrothermal and sol–gel techniques","authors":"Mahsa Sadat Sarmalek, Mehdi Adelifard, Seyed Ahmad Nabavi Amri","doi":"10.1007/s10008-024-06075-2","DOIUrl":null,"url":null,"abstract":"<p>This research focused on the synthesis of gallium oxide (γ-Ga<sub>2</sub>O<sub>3</sub>) nanoparticles using sol–gel and hydrothermal techniques. X-ray diffraction (XRD), field emission electron microscopy (FESEM), UV–Vis spectrophotometer, Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), calculation of specific capacitance (SC), and specific capacitance (Q) techniques were used. XRD patterns showed the formation of the cubic phase of gallium oxide (γ-Ga<sub>2</sub>O<sub>3</sub>). The polyhedral and spherical grains can be seen in the FESEM images of the synthesized nanostructures. The band gap values were determined between 4.29 and 4.42 eV. The FTIR results indicate the formation of a gallium oxide structure. The cyclic voltammetry (CV) results are consistent with the redox reactions performed. Samples produced by sol–gel and hydrothermal synthesis, then microwave-annealed, have the highest capacity (SC). They show values of 1172.6 mAh g<sup>−1</sup> and 1261.9 mAh g<sup>−1</sup>, respectively. These results show that these nanoparticles are effective anodes for lithium-ion batteries.</p>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10008-024-06075-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
This research focused on the synthesis of gallium oxide (γ-Ga2O3) nanoparticles using sol–gel and hydrothermal techniques. X-ray diffraction (XRD), field emission electron microscopy (FESEM), UV–Vis spectrophotometer, Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), calculation of specific capacitance (SC), and specific capacitance (Q) techniques were used. XRD patterns showed the formation of the cubic phase of gallium oxide (γ-Ga2O3). The polyhedral and spherical grains can be seen in the FESEM images of the synthesized nanostructures. The band gap values were determined between 4.29 and 4.42 eV. The FTIR results indicate the formation of a gallium oxide structure. The cyclic voltammetry (CV) results are consistent with the redox reactions performed. Samples produced by sol–gel and hydrothermal synthesis, then microwave-annealed, have the highest capacity (SC). They show values of 1172.6 mAh g−1 and 1261.9 mAh g−1, respectively. These results show that these nanoparticles are effective anodes for lithium-ion batteries.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.