Enhanced Electrocatalytic Activity for Nitrate Reduction to Ammonia by Tuning a Ruthenium Oxidation State of Ruthenium-Based Nanotubes

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xin Jiang, Pan-Yan Chen, Wan-Wan Wu, Jia-Yin Guo, Wei-Wei Li, Yu-Jie Mao, Tian Sheng, Xinsheng Zhao, Lu Wei
{"title":"Enhanced Electrocatalytic Activity for Nitrate Reduction to Ammonia by Tuning a Ruthenium Oxidation State of Ruthenium-Based Nanotubes","authors":"Xin Jiang, Pan-Yan Chen, Wan-Wan Wu, Jia-Yin Guo, Wei-Wei Li, Yu-Jie Mao, Tian Sheng, Xinsheng Zhao, Lu Wei","doi":"10.1021/acsanm.4c04066","DOIUrl":null,"url":null,"abstract":"Electrocatalytic nitrate reduction to ammonia (NRA) seriously suffers from slow kinetics and low selectivity due to its eight-electron transfer process and complex reaction intermediates. Herein, Ru-based nanotubes (NTs) were designed to enhance the electrocatalytic activity of NRA. Significantly, the metallic Ru NTs endowed remarkable ammonia (NH<sub>3</sub>) yield rate (<i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;msub&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;NH&lt;/mi&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 2.162em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.935em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.537em, 1001.93em, 2.616em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.935em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1000.46em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑣</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.514em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.31em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1001.03em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">NH</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.861em; left: 1.026em;\"><span style=\"font-size: 50%; font-family: STIXMathJax_Main;\">3</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.372em; border-left: 0px solid; width: 0px; height: 0.941em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>v</mi><mrow><msub><mi>NH</mi><mn>3</mn></msub></mrow></msub></math></span></span><script type=\"math/mml\"><math display=\"inline\"><msub><mi>v</mi><mrow><msub><mi>NH</mi><mn>3</mn></msub></mrow></msub></math></script>) of 40.6 mg h<sup>–1</sup> mg<sub>cat.</sub><sup>–1</sup> at −1.20 V vs SCE and the highest NH<sub>3</sub> Faradaic efficiency (<i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;msub&gt;&lt;mi&gt;FE&lt;/mi&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi mathvariant=\"normal\"&gt;NH&lt;/mi&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 2.844em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 2.56em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.31em, 1002.56em, 2.616em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 2.56em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1001.14em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">FE</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 1.196em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.31em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1001.03em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">NH</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.861em; left: 1.026em;\"><span style=\"font-size: 50%; font-family: STIXMathJax_Main;\">3</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.372em; border-left: 0px solid; width: 0px; height: 1.128em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>FE</mi><mrow><msub><mi mathvariant=\"normal\">NH</mi><mn>3</mn></msub></mrow></msub></math></span></span><script type=\"math/mml\"><math display=\"inline\"><msub><mi>FE</mi><mrow><msub><mi mathvariant=\"normal\">NH</mi><mn>3</mn></msub></mrow></msub></math></script>) of 98.4% at −1.10 V vs SCE under ambient conditions, which are superior to those of RuO<sub>2</sub> NTs (<i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;msub&gt;&lt;mi&gt;v&lt;/mi&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;NH&lt;/mi&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 2.162em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 1.935em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.537em, 1001.93em, 2.616em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.935em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1000.46em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Normal-italic;\">𝑣</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 0.514em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.31em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1001.03em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">NH</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.861em; left: 1.026em;\"><span style=\"font-size: 50%; font-family: STIXMathJax_Main;\">3</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.372em; border-left: 0px solid; width: 0px; height: 0.941em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>v</mi><mrow><msub><mi>NH</mi><mn>3</mn></msub></mrow></msub></math></span></span><script type=\"math/mml\"><math display=\"inline\"><msub><mi>v</mi><mrow><msub><mi>NH</mi><mn>3</mn></msub></mrow></msub></math></script>: 0.52 mg h<sup>–1</sup> mg<sub>cat.</sub><sup>–1</sup>, <i></i><span style=\"color: inherit;\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"&gt;&lt;msub&gt;&lt;mi&gt;FE&lt;/mi&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;NH&lt;/mi&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"position: relative;\" tabindex=\"0\"><nobr aria-hidden=\"true\"><span style=\"width: 2.844em; display: inline-block;\"><span style=\"display: inline-block; position: relative; width: 2.56em; height: 0px; font-size: 110%;\"><span style=\"position: absolute; clip: rect(1.31em, 1002.56em, 2.616em, -999.997em); top: -2.156em; left: 0em;\"><span><span><span style=\"display: inline-block; position: relative; width: 2.56em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.128em, 1001.14em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-family: STIXMathJax_Main;\">FE</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.804em; left: 1.196em;\"><span><span><span style=\"display: inline-block; position: relative; width: 1.31em; height: 0px;\"><span style=\"position: absolute; clip: rect(3.355em, 1001.03em, 4.151em, -999.997em); top: -3.974em; left: 0em;\"><span style=\"font-size: 70.7%; font-family: STIXMathJax_Main;\">NH</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span><span style=\"position: absolute; top: -3.861em; left: 1.026em;\"><span style=\"font-size: 50%; font-family: STIXMathJax_Main;\">3</span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 3.98em;\"></span></span></span></span></span><span style=\"display: inline-block; width: 0px; height: 2.162em;\"></span></span></span><span style=\"display: inline-block; overflow: hidden; vertical-align: -0.372em; border-left: 0px solid; width: 0px; height: 1.128em;\"></span></span></nobr><span role=\"presentation\"><math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>FE</mi><mrow><msub><mi>NH</mi><mn>3</mn></msub></mrow></msub></math></span></span><script type=\"math/mml\"><math display=\"inline\"><msub><mi>FE</mi><mrow><msub><mi>NH</mi><mn>3</mn></msub></mrow></msub></math></script>: 18.2%). Both experimental and theoretical results have proved that the Ru metallic state is more beneficial to N–O bond breaking and hydrogenation than the oxidized state, improving the kinetics and selectivity of NRA.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsanm.4c04066","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic nitrate reduction to ammonia (NRA) seriously suffers from slow kinetics and low selectivity due to its eight-electron transfer process and complex reaction intermediates. Herein, Ru-based nanotubes (NTs) were designed to enhance the electrocatalytic activity of NRA. Significantly, the metallic Ru NTs endowed remarkable ammonia (NH3) yield rate (vNH3) of 40.6 mg h–1 mgcat.–1 at −1.20 V vs SCE and the highest NH3 Faradaic efficiency (FENH3) of 98.4% at −1.10 V vs SCE under ambient conditions, which are superior to those of RuO2 NTs (vNH3: 0.52 mg h–1 mgcat.–1, FENH3: 18.2%). Both experimental and theoretical results have proved that the Ru metallic state is more beneficial to N–O bond breaking and hydrogenation than the oxidized state, improving the kinetics and selectivity of NRA.

Abstract Image

通过调节钌基纳米管的钌氧化态提高硝酸盐还原成氨的电催化活性
电催化硝酸盐还原成氨(NRA)因其八电子转移过程和复杂的反应中间产物而存在动力学慢和选择性低的问题。在此,我们设计了基于 Ru 的纳米管(NTs)来提高 NRA 的电催化活性。值得注意的是,金属 Ru 纳米管在-1.20 V 与 SCE 相比时,氨气(NH3)产率(𝑣NH3vNH3vNH3)为 40.6 mg h-1 mgcat.-1,NH3 法拉第效率(FENH3FENH3FENH3)为 98.4%。4% ,优于 RuO2 NTs(𝑣NH3vNH3vNH3:0.52 mg h-1 mgcat.-1,FENH3FENH3FENH3:18.2%)。实验和理论结果都证明,金属态的 Ru 比氧化态的 Ru 更有利于 N-O 键的断裂和氢化,从而提高了 NRA 的动力学和选择性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信