{"title":"Adaptive physiological and metabolic alterations in Staphylococcus aureus evolution under vancomycin exposure","authors":"Xin Cheng, Yue Shi, Yadong Liu, Yibin Xu, Jingxin Ma, Liyan Ma, Zerui Wang, Shuilong Guo, Jianrong Su","doi":"10.1007/s11274-024-04128-2","DOIUrl":null,"url":null,"abstract":"<p><i>Staphylococcus aureus</i> can develop antibiotic resistance and evade immune responses, causing infections in different body sites. However, the metabolic changes underlying this process are poorly understood. A variant strain, C1V, was derived from the parental strain C1 by exposing it to increasing concentrations of vancomycin in vitro. C1V exhibited a vancomycin-intermediate phenotype and physiological changes compared to C1. It showed higher survival rates than C1 when phagocytosed by Raw264.7 cells. Metabolomics analysis identified significant metabolic differences pre- and post-induction (C1 + SC1 vs. C1V + SC1V: 201 metabolites) as well as pre- and post-phagocytosis (C1 vs. SC1: 50 metabolites; C1V vs. SC1V: 95 metabolites). The variant strain had distinct morphological characteristics, decreased adhesion ability, impaired virulence, and enhanced resistance to phagocytosis compared to the parental strain. Differential metabolites may contribute to <i>S. aureus</i> ‘ resistance to antibiotics and phagocytosis, offering insights into potential strategies for altering vancomycin nonsusceptibility and enhancing phagocyte killing by manipulating bacterial metabolism.</p>","PeriodicalId":23744,"journal":{"name":"World Journal of Microbiology and Biotechnology","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11274-024-04128-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Staphylococcus aureus can develop antibiotic resistance and evade immune responses, causing infections in different body sites. However, the metabolic changes underlying this process are poorly understood. A variant strain, C1V, was derived from the parental strain C1 by exposing it to increasing concentrations of vancomycin in vitro. C1V exhibited a vancomycin-intermediate phenotype and physiological changes compared to C1. It showed higher survival rates than C1 when phagocytosed by Raw264.7 cells. Metabolomics analysis identified significant metabolic differences pre- and post-induction (C1 + SC1 vs. C1V + SC1V: 201 metabolites) as well as pre- and post-phagocytosis (C1 vs. SC1: 50 metabolites; C1V vs. SC1V: 95 metabolites). The variant strain had distinct morphological characteristics, decreased adhesion ability, impaired virulence, and enhanced resistance to phagocytosis compared to the parental strain. Differential metabolites may contribute to S. aureus ‘ resistance to antibiotics and phagocytosis, offering insights into potential strategies for altering vancomycin nonsusceptibility and enhancing phagocyte killing by manipulating bacterial metabolism.