Resilient and Adaptive Replanning for Multi-Robot Target Tracking with Sensing and Communication Danger Zones

Peihan Li, Yuwei Wu, Jiazhen Liu, Gaurav S. Sukhatme, Vijay Kumar, Lifeng Zhou
{"title":"Resilient and Adaptive Replanning for Multi-Robot Target Tracking with Sensing and Communication Danger Zones","authors":"Peihan Li, Yuwei Wu, Jiazhen Liu, Gaurav S. Sukhatme, Vijay Kumar, Lifeng Zhou","doi":"arxiv-2409.11230","DOIUrl":null,"url":null,"abstract":"Multi-robot collaboration for target tracking presents significant challenges\nin hazardous environments, including addressing robot failures, dynamic\npriority changes, and other unpredictable factors. Moreover, these challenges\nare increased in adversarial settings if the environment is unknown. In this\npaper, we propose a resilient and adaptive framework for multi-robot,\nmulti-target tracking in environments with unknown sensing and communication\ndanger zones. The damages posed by these zones are temporary, allowing robots\nto track targets while accepting the risk of entering dangerous areas. We\nformulate the problem as an optimization with soft chance constraints, enabling\nreal-time adjustments to robot behavior based on varying types of dangers and\nfailures. An adaptive replanning strategy is introduced, featuring different\ntriggers to improve group performance. This approach allows for dynamic\nprioritization of target tracking and risk aversion or resilience, depending on\nevolving resources and real-time conditions. To validate the effectiveness of\nthe proposed method, we benchmark and evaluate it across multiple scenarios in\nsimulation and conduct several real-world experiments.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-robot collaboration for target tracking presents significant challenges in hazardous environments, including addressing robot failures, dynamic priority changes, and other unpredictable factors. Moreover, these challenges are increased in adversarial settings if the environment is unknown. In this paper, we propose a resilient and adaptive framework for multi-robot, multi-target tracking in environments with unknown sensing and communication danger zones. The damages posed by these zones are temporary, allowing robots to track targets while accepting the risk of entering dangerous areas. We formulate the problem as an optimization with soft chance constraints, enabling real-time adjustments to robot behavior based on varying types of dangers and failures. An adaptive replanning strategy is introduced, featuring different triggers to improve group performance. This approach allows for dynamic prioritization of target tracking and risk aversion or resilience, depending on evolving resources and real-time conditions. To validate the effectiveness of the proposed method, we benchmark and evaluate it across multiple scenarios in simulation and conduct several real-world experiments.
利用传感和通信危险区为多机器人目标跟踪进行弹性和自适应重新规划
在危险环境中,多机器人协作追踪目标面临着巨大挑战,包括处理机器人故障、优先级动态变化和其他不可预测因素。此外,在环境未知的对抗环境中,这些挑战会更加严峻。在本文中,我们提出了一种弹性自适应框架,用于在具有未知传感和通信危险区的环境中进行多机器人、多目标跟踪。这些区域造成的损害是暂时的,允许机器人在跟踪目标的同时接受进入危险区域的风险。我们将这一问题表述为一个带有软机会约束的优化问题,从而能够根据不同类型的危险和故障对机器人行为进行实时调整。我们引入了一种自适应重新规划策略,其特点是采用不同的触发器来提高群体性能。这种方法可以根据不断变化的资源和实时条件,对目标跟踪和风险规避或恢复能力进行动态优先排序。为了验证所提方法的有效性,我们在多个模拟场景中对其进行了基准测试和评估,并进行了多次真实世界实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信