S. I. Kosyakov, S. N. Kulichkov, A. A. Mishenin, E. V. Golikova
{"title":"Specific Features of Atmospheric Propagation of Nonlinear Acoustic Disturbances from Pulsed Sources","authors":"S. I. Kosyakov, S. N. Kulichkov, A. A. Mishenin, E. V. Golikova","doi":"10.1134/S1063771024601808","DOIUrl":null,"url":null,"abstract":"<div><p>The features of the propagation of nonlinear pulsed acoustic disturbances in the atmosphere are considered. Data are presented on the experimental observation of shock front formation and the transition of a shock wave into a low-intensity acoustic wave with transformation of the pulse shape and broadening of the front at distances greater than 1000 km under both spherical and cylindrical propagation conditions. The influence of Kelvin–Helmholtz instability during rapid gas compression on the formation of the shock front structure is discussed. Under atmospheric conditions, such instability significantly affects dissipative processes in the air and forms the front of a nonlinear wave.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 3","pages":"549 - 559"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771024601808","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The features of the propagation of nonlinear pulsed acoustic disturbances in the atmosphere are considered. Data are presented on the experimental observation of shock front formation and the transition of a shock wave into a low-intensity acoustic wave with transformation of the pulse shape and broadening of the front at distances greater than 1000 km under both spherical and cylindrical propagation conditions. The influence of Kelvin–Helmholtz instability during rapid gas compression on the formation of the shock front structure is discussed. Under atmospheric conditions, such instability significantly affects dissipative processes in the air and forms the front of a nonlinear wave.
期刊介绍:
Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.