Alex Gillespie, Vlad Glăveanu, Constance de Saint-Laurent, Tania Zittoun, Marcos José Bernal Marcos
{"title":"Multi-Resolution Design: Using Qualitative and Quantitative Analyses to Recursively Zoom in and out of the Same Dataset","authors":"Alex Gillespie, Vlad Glăveanu, Constance de Saint-Laurent, Tania Zittoun, Marcos José Bernal Marcos","doi":"10.1177/15586898241284696","DOIUrl":null,"url":null,"abstract":"A recent challenge is how to mix qualitative interpretation with computational techniques to analyze big qualitative data. To this end, we propose “multi-resolution design” for mixed method analysis of the same data: qualitative analysis zooms-in to provide in-depth contextual insight and quantitative analysis zooms-out to provide measures, associations, and statistical models. The raw qualitative data is transformed between excerpts, counts, and measures; with each having unique gains and losses. Multi-resolution designs entail transforming the data back-and-forth between these data types, recursively quantitizing and qualitizing the data. Two empirical studies illustrate how multi-resolution design can support abductive inference and increase validity. This contributes to mixed methods literature a conceptualization of how mixed analysis of the same big qualitative dataset can create tightly integrated synergies.","PeriodicalId":47844,"journal":{"name":"Journal of Mixed Methods Research","volume":"41 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mixed Methods Research","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/15586898241284696","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A recent challenge is how to mix qualitative interpretation with computational techniques to analyze big qualitative data. To this end, we propose “multi-resolution design” for mixed method analysis of the same data: qualitative analysis zooms-in to provide in-depth contextual insight and quantitative analysis zooms-out to provide measures, associations, and statistical models. The raw qualitative data is transformed between excerpts, counts, and measures; with each having unique gains and losses. Multi-resolution designs entail transforming the data back-and-forth between these data types, recursively quantitizing and qualitizing the data. Two empirical studies illustrate how multi-resolution design can support abductive inference and increase validity. This contributes to mixed methods literature a conceptualization of how mixed analysis of the same big qualitative dataset can create tightly integrated synergies.
期刊介绍:
The Journal of Mixed Methods Research serves as a premiere outlet for ground-breaking and seminal work in the field of mixed methods research. Of primary importance will be building an international and multidisciplinary community of mixed methods researchers. The journal''s scope includes exploring a global terminology and nomenclature for mixed methods research, delineating where mixed methods research may be used most effectively, creating the paradigmatic and philosophical foundations for mixed methods research, illuminating design and procedure issues, and determining the logistics of conducting mixed methods research. JMMR invites articles from a wide variety of international perspectives, including academics and practitioners from psychology, sociology, education, evaluation, health sciences, geography, communication, management, family studies, marketing, social work, and other related disciplines across the social, behavioral, and human sciences.