From Words to Wheels: Automated Style-Customized Policy Generation for Autonomous Driving

Xu Han, Xianda Chen, Zhenghan Cai, Pinlong Cai, Meixin Zhu, Xiaowen Chu
{"title":"From Words to Wheels: Automated Style-Customized Policy Generation for Autonomous Driving","authors":"Xu Han, Xianda Chen, Zhenghan Cai, Pinlong Cai, Meixin Zhu, Xiaowen Chu","doi":"arxiv-2409.11694","DOIUrl":null,"url":null,"abstract":"Autonomous driving technology has witnessed rapid advancements, with\nfoundation models improving interactivity and user experiences. However,\ncurrent autonomous vehicles (AVs) face significant limitations in delivering\ncommand-based driving styles. Most existing methods either rely on predefined\ndriving styles that require expert input or use data-driven techniques like\nInverse Reinforcement Learning to extract styles from driving data. These\napproaches, though effective in some cases, face challenges: difficulty\nobtaining specific driving data for style matching (e.g., in Robotaxis),\ninability to align driving style metrics with user preferences, and limitations\nto pre-existing styles, restricting customization and generalization to new\ncommands. This paper introduces Words2Wheels, a framework that automatically\ngenerates customized driving policies based on natural language user commands.\nWords2Wheels employs a Style-Customized Reward Function to generate a\nStyle-Customized Driving Policy without relying on prior driving data. By\nleveraging large language models and a Driving Style Database, the framework\nefficiently retrieves, adapts, and generalizes driving styles. A Statistical\nEvaluation module ensures alignment with user preferences. Experimental results\ndemonstrate that Words2Wheels outperforms existing methods in accuracy,\ngeneralization, and adaptability, offering a novel solution for customized AV\ndriving behavior. Code and demo available at\nhttps://yokhon.github.io/Words2Wheels/.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous driving technology has witnessed rapid advancements, with foundation models improving interactivity and user experiences. However, current autonomous vehicles (AVs) face significant limitations in delivering command-based driving styles. Most existing methods either rely on predefined driving styles that require expert input or use data-driven techniques like Inverse Reinforcement Learning to extract styles from driving data. These approaches, though effective in some cases, face challenges: difficulty obtaining specific driving data for style matching (e.g., in Robotaxis), inability to align driving style metrics with user preferences, and limitations to pre-existing styles, restricting customization and generalization to new commands. This paper introduces Words2Wheels, a framework that automatically generates customized driving policies based on natural language user commands. Words2Wheels employs a Style-Customized Reward Function to generate a Style-Customized Driving Policy without relying on prior driving data. By leveraging large language models and a Driving Style Database, the framework efficiently retrieves, adapts, and generalizes driving styles. A Statistical Evaluation module ensures alignment with user preferences. Experimental results demonstrate that Words2Wheels outperforms existing methods in accuracy, generalization, and adaptability, offering a novel solution for customized AV driving behavior. Code and demo available at https://yokhon.github.io/Words2Wheels/.
从文字到车轮:为自动驾驶自动生成风格定制的策略
自动驾驶技术突飞猛进,基础模型改善了交互性和用户体验。然而,目前的自动驾驶汽车(AV)在提供基于指令的驾驶方式方面面临着很大的局限性。大多数现有方法要么依赖于需要专家输入的预定义驾驶风格,要么使用逆强化学习等数据驱动技术从驾驶数据中提取风格。这些方法虽然在某些情况下行之有效,但也面临着挑战:难以获得特定的驾驶数据进行风格匹配(例如在 Robotaxis 中),无法将驾驶风格指标与用户偏好相匹配,以及仅限于预先存在的风格,从而限制了对新命令的定制和泛化。本文介绍的 Words2Wheels 是一个基于自然语言用户指令自动生成定制驾驶策略的框架。Words2Wheels 采用风格定制奖励函数生成风格定制驾驶策略,而无需依赖先前的驾驶数据。该框架利用大型语言模型和驾驶风格数据库,有效地检索、调整和概括驾驶风格。统计评估模块可确保与用户偏好保持一致。实验结果表明,Words2Wheels 在准确性、概括性和适应性方面均优于现有方法,为定制化的自动驾驶汽车驾驶行为提供了新颖的解决方案。代码和演示可在https://yokhon.github.io/Words2Wheels/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信