Conductivity optimisation of graphene oxide-M13 bacteriophage nanocomposites: towards graphene-based gas micronano-sensors

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kate Stokes, Yiwei Sun, Jarrod L. Thomas, Paolo Passaretti, Henry White, Pola Goldberg Oppenheimer
{"title":"Conductivity optimisation of graphene oxide-M13 bacteriophage nanocomposites: towards graphene-based gas micronano-sensors","authors":"Kate Stokes,&nbsp;Yiwei Sun,&nbsp;Jarrod L. Thomas,&nbsp;Paolo Passaretti,&nbsp;Henry White,&nbsp;Pola Goldberg Oppenheimer","doi":"10.1186/s11671-024-04101-w","DOIUrl":null,"url":null,"abstract":"<div><p>Graphene oxide (GO) and M13 bacteriophage can self-assemble to form ultra-low density porous structures, known as GraPhage13 aerogels (GPA). Due to the insulating nature of GPA and the challenges in producing highly conductive aerogels, it is paramount to explore ways to enhance the conductivity of GPA. Herein, we have developed a method to enhance the conductivity of GPA, via the integration and optimisation of 5 nm and 20 nm diameter gold nanoparticles (AuNPs) into the aerogel structure and systematically analysed the morphology, composition and spectroscopic properties of the resulting GPA-Au nanocomposite. The fabricated GPA-Au nanocomposites exhibited remarkable increases in conductivity, with the integration of 5 nm AuNPs leading to a 53-fold increase compared to GPA, achieving a performance of up to 360 nS/cm, which is within the range suitable for miniaturised semiconductor devices. The mechanism behind the conductivity enhancement was further investigated and attributed to GO-AuNP interactions increasing the carrier density by introducing new energy levels in the GO band gap or shifting its Fermi level towards the conduction band. These findings demonstrate the potential of functionalised AuNPs to significantly improve the electrical properties of GPA, paving the way for their application in gas sensors for biological and chemical detection and a new range of advanced semiconductor devices.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04101-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04101-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene oxide (GO) and M13 bacteriophage can self-assemble to form ultra-low density porous structures, known as GraPhage13 aerogels (GPA). Due to the insulating nature of GPA and the challenges in producing highly conductive aerogels, it is paramount to explore ways to enhance the conductivity of GPA. Herein, we have developed a method to enhance the conductivity of GPA, via the integration and optimisation of 5 nm and 20 nm diameter gold nanoparticles (AuNPs) into the aerogel structure and systematically analysed the morphology, composition and spectroscopic properties of the resulting GPA-Au nanocomposite. The fabricated GPA-Au nanocomposites exhibited remarkable increases in conductivity, with the integration of 5 nm AuNPs leading to a 53-fold increase compared to GPA, achieving a performance of up to 360 nS/cm, which is within the range suitable for miniaturised semiconductor devices. The mechanism behind the conductivity enhancement was further investigated and attributed to GO-AuNP interactions increasing the carrier density by introducing new energy levels in the GO band gap or shifting its Fermi level towards the conduction band. These findings demonstrate the potential of functionalised AuNPs to significantly improve the electrical properties of GPA, paving the way for their application in gas sensors for biological and chemical detection and a new range of advanced semiconductor devices.

Abstract Image

氧化石墨烯-M13噬菌体纳米复合材料的传导性优化:实现基于石墨烯的气体微纳传感器
氧化石墨烯(GO)和 M13 噬菌体可以自组装形成超低密度多孔结构,即 GraPhage13 气凝胶(GPA)。由于 GPA 的绝缘性能以及生产高导电性气凝胶所面临的挑战,因此探索增强 GPA 导电性的方法至关重要。在此,我们开发了一种增强气凝胶导电性的方法,将直径为 5 纳米和 20 纳米的金纳米粒子(AuNPs)整合并优化到气凝胶结构中,并系统分析了所制备的 GPA-Au 纳米复合材料的形态、成分和光谱特性。所制备的 GPA-Au 纳米复合材料的电导率显著提高,与 GPA 相比,5 nm AuNPs 的加入使电导率提高了 53 倍,性能高达 360 nS/cm,在适合微型半导体器件的范围内。对电导率增强背后的机理进行了进一步研究,结果表明,GO-AuNP 相互作用通过在 GO 带隙中引入新能级或将其费米级移至导带来增加载流子密度。这些发现证明了功能化 AuNPs 显著改善 GPA 电性能的潜力,为其在生物和化学检测气体传感器以及一系列新型先进半导体器件中的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信