A Deep Learning-Based Hybrid CNN-LSTM Model for Location-Aware Web Service Recommendation

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ankur Pandey, Praveen Kumar Mannepalli, Manish Gupta, Ramraj Dangi, Gaurav Choudhary
{"title":"A Deep Learning-Based Hybrid CNN-LSTM Model for Location-Aware Web Service Recommendation","authors":"Ankur Pandey, Praveen Kumar Mannepalli, Manish Gupta, Ramraj Dangi, Gaurav Choudhary","doi":"10.1007/s11063-024-11687-w","DOIUrl":null,"url":null,"abstract":"<p>Advertising is the most crucial part of all social networking sites. The phenomenal rise of social media has resulted in a general increase in the availability of customer tastes and preferences, which is a positive development. This information may be used to improve the service that is offered to users as well as target advertisements for customers who already utilize the service. It is essential while delivering relevant advertisements to consumers, to take into account the geographic location of the consumers. Customers will be ecstatic if the offerings displayed to them are merely available in their immediate vicinity. As the user’s requirements will vary from place to place, location-based services are necessary for gathering this essential data. To get users to stop thinking about where they are and instead focus on an ad, location-based advertising (LBA) uses their mobile device’s GPS to pinpoint nearby businesses and provide useful information. Due to the increased two-way communication between the marketer and the user, mobile consumers’ privacy concerns and personalization issues are becoming more of a barrier. In this research, we developed a collaborative filtering-based hybrid CNN-LSTM model for recommending geographically relevant online services using deep neural networks. The proposed hybrid model is made using two neural networks, i.e., CNN and LSTM. Geographical information systems (GIS) are used to acquire initial location data to collect precise locational details. The proposed LBA for GIS is built in a Python simulation environment for evaluation. Hybrid CNN-LSTM recommendation performance beats existing location-aware service recommender systems in large simulations based on the WS dream dataset.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"96 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11687-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Advertising is the most crucial part of all social networking sites. The phenomenal rise of social media has resulted in a general increase in the availability of customer tastes and preferences, which is a positive development. This information may be used to improve the service that is offered to users as well as target advertisements for customers who already utilize the service. It is essential while delivering relevant advertisements to consumers, to take into account the geographic location of the consumers. Customers will be ecstatic if the offerings displayed to them are merely available in their immediate vicinity. As the user’s requirements will vary from place to place, location-based services are necessary for gathering this essential data. To get users to stop thinking about where they are and instead focus on an ad, location-based advertising (LBA) uses their mobile device’s GPS to pinpoint nearby businesses and provide useful information. Due to the increased two-way communication between the marketer and the user, mobile consumers’ privacy concerns and personalization issues are becoming more of a barrier. In this research, we developed a collaborative filtering-based hybrid CNN-LSTM model for recommending geographically relevant online services using deep neural networks. The proposed hybrid model is made using two neural networks, i.e., CNN and LSTM. Geographical information systems (GIS) are used to acquire initial location data to collect precise locational details. The proposed LBA for GIS is built in a Python simulation environment for evaluation. Hybrid CNN-LSTM recommendation performance beats existing location-aware service recommender systems in large simulations based on the WS dream dataset.

Abstract Image

用于位置感知网络服务推荐的基于深度学习的混合 CNN-LSTM 模型
广告是所有社交网站最重要的组成部分。社交媒体的迅速崛起导致客户品味和偏好的普遍增加,这是一个积极的发展。这些信息可用于改进为用户提供的服务,以及为已经使用服务的客户提供有针对性的广告。在向消费者提供相关广告时,必须考虑到消费者的地理位置。如果向客户展示的产品仅在其附近提供,客户会欣喜若狂。由于用户的需求因地而异,基于地理位置的服务对于收集这些重要数据十分必要。为了让用户停止思考自己身在何处,转而关注广告,基于位置的广告(LBA)利用移动设备的 GPS 定位附近的商家并提供有用的信息。由于营销人员和用户之间的双向交流越来越多,移动消费者对隐私和个性化问题的担忧也越来越成为障碍。在这项研究中,我们利用深度神经网络开发了一种基于协同过滤的混合 CNN-LSTM 模型,用于推荐地理位置相关的在线服务。所提出的混合模型使用了两种神经网络,即 CNN 和 LSTM。地理信息系统(GIS)用于获取初始位置数据,以收集精确的位置细节。我们在 Python 仿真环境中构建了针对地理信息系统的 LBA 模型,并对其进行了评估。在基于 WS dream 数据集的大型模拟中,CNN-LSTM 混合推荐性能优于现有的位置感知服务推荐系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Processing Letters
Neural Processing Letters 工程技术-计算机:人工智能
CiteScore
4.90
自引率
12.90%
发文量
392
审稿时长
2.8 months
期刊介绍: Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches. The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信