Physical-space estimates for axisymmetric waves on extremal Kerr spacetime

IF 1.7 2区 数学 Q1 MATHEMATICS
Elena Giorgi, Jingbo Wan
{"title":"Physical-space estimates for axisymmetric waves on extremal Kerr spacetime","authors":"Elena Giorgi,&nbsp;Jingbo Wan","doi":"10.1016/j.jfa.2024.110668","DOIUrl":null,"url":null,"abstract":"<div><p>We study axisymmetric solutions to the wave equation on extremal Kerr backgrounds and obtain integrated local energy decay (or Morawetz estimates) through an analysis <em>exclusively in physical-space</em>. Boundedness of the energy and Morawetz estimates for axisymmetric waves in extremal Kerr were first obtained by Aretakis <span><span>[13]</span></span> through the construction of frequency-localized currents used in particular to express the trapping degeneracy. Here we extend to extremal Kerr a method introduced by Stogin <span><span>[63]</span></span> in the sub-extremal case, simplifying Aretakis' derivation of Morawetz estimates through purely classical currents.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003562","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study axisymmetric solutions to the wave equation on extremal Kerr backgrounds and obtain integrated local energy decay (or Morawetz estimates) through an analysis exclusively in physical-space. Boundedness of the energy and Morawetz estimates for axisymmetric waves in extremal Kerr were first obtained by Aretakis [13] through the construction of frequency-localized currents used in particular to express the trapping degeneracy. Here we extend to extremal Kerr a method introduced by Stogin [63] in the sub-extremal case, simplifying Aretakis' derivation of Morawetz estimates through purely classical currents.

极值克尔时空中轴对称波的物理空间估计值
我们研究了极值克尔背景上波方程的轴对称解,并通过分析得到了综合局部能量衰减(或莫拉维兹估计值)。极值克尔中轴对称波的能量有界性和莫拉维兹估计值最早是由 Aretakis 通过构建频率局部电流(特别是用于表达陷波退行性)得到的。在此,我们将斯托金在次极值情况下引入的方法扩展到极值克尔,通过纯经典电流简化了阿雷塔基斯对莫拉维兹估计值的推导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信