Hadis Mortazavi Milani, Brent Van Neste, Ewoud Cosaert, Dirk Poelman
{"title":"Assessing the Stability and Photocatalytic Efficiency of a Biodegradable PLA-TiO2 Membrane for Air Purification","authors":"Hadis Mortazavi Milani, Brent Van Neste, Ewoud Cosaert, Dirk Poelman","doi":"10.1002/adsu.202400594","DOIUrl":null,"url":null,"abstract":"The potential of a biodegradable polylactic acid (PLA)-TiO<sub>2</sub> membrane for air purification is investigated, utilizing the environmentally friendly solvent Cyrene. Through the integration of TiO<sub>2</sub> nanoparticles within a PLA matrix, the membrane is used to degrade ethanol as a model volatile organic compound (VOC) under UV light. Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDX), and UV–vis spectrophotometry confirm the porous structure of the membrane, the even distribution of TiO<sub>2,</sub> and its effective band gap of 3.06 eV, respectively. Ethanol adsorption is best described by the Langmuir isotherm model, suggesting monolayer coverage on a homogeneous surface. Photocatalytic tests demonstrate that the membrane decomposes ethanol (6800 ppm) within 14 min under UV light, generating acetaldehyde, acetic acid, formaldehyde, and formic acid as intermediates, and ultimately producing CO<sub>2</sub> and water. Reusability tests indicate a decrease in decomposition time over successive cycles due to increased TiO<sub>2</sub> exposure from the gradual degradation of PLA. However, this degradation poses challenges for continuous use, compromising the membrane's long-term durability.","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"28 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adsu.202400594","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The potential of a biodegradable polylactic acid (PLA)-TiO2 membrane for air purification is investigated, utilizing the environmentally friendly solvent Cyrene. Through the integration of TiO2 nanoparticles within a PLA matrix, the membrane is used to degrade ethanol as a model volatile organic compound (VOC) under UV light. Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDX), and UV–vis spectrophotometry confirm the porous structure of the membrane, the even distribution of TiO2, and its effective band gap of 3.06 eV, respectively. Ethanol adsorption is best described by the Langmuir isotherm model, suggesting monolayer coverage on a homogeneous surface. Photocatalytic tests demonstrate that the membrane decomposes ethanol (6800 ppm) within 14 min under UV light, generating acetaldehyde, acetic acid, formaldehyde, and formic acid as intermediates, and ultimately producing CO2 and water. Reusability tests indicate a decrease in decomposition time over successive cycles due to increased TiO2 exposure from the gradual degradation of PLA. However, this degradation poses challenges for continuous use, compromising the membrane's long-term durability.
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.