Guru Prasanna Ganapathi Subramaniam, Matthew Billing, Hoang-Duy P. Nguyen, Nguyen-Phuong Nguyen, Bao-Ngoc T. Le, Seonghyeok Park, Sanjayan Sathasivam, Thuy-Phuong T. Pham, Steve Dunn
{"title":"Enhanced Piezocatalytic Water Splitting by Platinum-Decorated Barium Titanate","authors":"Guru Prasanna Ganapathi Subramaniam, Matthew Billing, Hoang-Duy P. Nguyen, Nguyen-Phuong Nguyen, Bao-Ngoc T. Le, Seonghyeok Park, Sanjayan Sathasivam, Thuy-Phuong T. Pham, Steve Dunn","doi":"10.1002/adsu.202400265","DOIUrl":null,"url":null,"abstract":"<p>Piezocatalysis has emerged as a promising field of research that uses mechanical energy to drive a chemical change. There is growing evidence that piezocatalysts can perform challenging chemical conversions from organic transformations to water splitting. A key challenge to piezocatlaysis is mitigating the inherent high relative permittivity of a ferroelectric material. This high permittivity restricts the transfer of carriers required for a chemical reaction to occur and reduces the reaction rate. Here the concept of producing a co-catalyst system is taken to enhance carrier mobility increasing the observed reaction rate. The study highlights the importance of determining the sonochemical and piezocatalytic contributions to catalysis. The combination of a Pt metal co-catalyst with BaTiO<sub>3</sub> through a simple solid-state method led to a four fold increase in the rate of H<sub>2</sub> production compared to BaTiO<sub>3</sub> and sonochemical reactions in the absence of a catalyst. BaTiO<sub>3</sub>/Pt is found to exhibit stable piezocatalytic performance over 12 h. Where there is a deviation from steady-state water splitting, it is shown that this is due to mechanical removal of Pt rather than a phase change in the catalyst system. This work confirms the additive benefits of hybrid materials for improving piezocatalytic processes.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"8 12","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsu.202400265","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400265","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Piezocatalysis has emerged as a promising field of research that uses mechanical energy to drive a chemical change. There is growing evidence that piezocatalysts can perform challenging chemical conversions from organic transformations to water splitting. A key challenge to piezocatlaysis is mitigating the inherent high relative permittivity of a ferroelectric material. This high permittivity restricts the transfer of carriers required for a chemical reaction to occur and reduces the reaction rate. Here the concept of producing a co-catalyst system is taken to enhance carrier mobility increasing the observed reaction rate. The study highlights the importance of determining the sonochemical and piezocatalytic contributions to catalysis. The combination of a Pt metal co-catalyst with BaTiO3 through a simple solid-state method led to a four fold increase in the rate of H2 production compared to BaTiO3 and sonochemical reactions in the absence of a catalyst. BaTiO3/Pt is found to exhibit stable piezocatalytic performance over 12 h. Where there is a deviation from steady-state water splitting, it is shown that this is due to mechanical removal of Pt rather than a phase change in the catalyst system. This work confirms the additive benefits of hybrid materials for improving piezocatalytic processes.
期刊介绍:
Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.