Robust Composite Separator Randomly Interwoven by PI and Pre-oxidized PAN Nanofibers for High Performance Lithium-ion Batteries

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Ying Li, Chen Pan, Feng Gan, Zhi-Xun Lin, Jin-Chao Yu, Zhen-Zhen Wei, Yan Zhao
{"title":"Robust Composite Separator Randomly Interwoven by PI and Pre-oxidized PAN Nanofibers for High Performance Lithium-ion Batteries","authors":"Ying Li,&nbsp;Chen Pan,&nbsp;Feng Gan,&nbsp;Zhi-Xun Lin,&nbsp;Jin-Chao Yu,&nbsp;Zhen-Zhen Wei,&nbsp;Yan Zhao","doi":"10.1007/s10118-024-3180-y","DOIUrl":null,"url":null,"abstract":"<div><p>Electrospun nanofibrous separators, despite lacking superior mechanical strength, have gained widespread attention with high porosity and facile processing. Herein, utilizing the fact that thermal imidization temperature of poly(amic acid) (PAA) into polyimide (PI) coincides with the pre-oxidation temperature of polyacrylonitrile (PAN) into carbon fiber, we proposed a new cross-electrospinning strategy to obtain a composite nanofibrous separator (PI/oPAN) randomly interwoven by PI and pre-oxidized PAN (oPAN) nanofibers, <i>via</i> synchronously electrospinning the PAA and PAN onto the same collector and then heat-treating for 2 h at 300 °C. The resultant PI/oPAN separator was able to preserve high porosity (71.7%), electrolyte wettability and thermal stability of PI nanofibrous membrane, and surprisingly exhibited high mechanical strength, being 3 times of PI, which mainly because of the numerous adhesion points generated by the melting of PAN in the pre-oxidation process. Meanwhile, the polar groups of oPAN and 3D fibrous network enhanced the PI/oPAN separator’s ionic conductivity and Li<sup>+</sup> transference number, rendering the corresponding cell with more stable cycling performance than cells assembled with pure PI, PAN or commercial PP separator. Therefore, this work might provide a new avenue for the ongoing design and further development of LIB separators capable of high safety and high performance.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 11","pages":"1768 - 1779"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3180-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Electrospun nanofibrous separators, despite lacking superior mechanical strength, have gained widespread attention with high porosity and facile processing. Herein, utilizing the fact that thermal imidization temperature of poly(amic acid) (PAA) into polyimide (PI) coincides with the pre-oxidation temperature of polyacrylonitrile (PAN) into carbon fiber, we proposed a new cross-electrospinning strategy to obtain a composite nanofibrous separator (PI/oPAN) randomly interwoven by PI and pre-oxidized PAN (oPAN) nanofibers, via synchronously electrospinning the PAA and PAN onto the same collector and then heat-treating for 2 h at 300 °C. The resultant PI/oPAN separator was able to preserve high porosity (71.7%), electrolyte wettability and thermal stability of PI nanofibrous membrane, and surprisingly exhibited high mechanical strength, being 3 times of PI, which mainly because of the numerous adhesion points generated by the melting of PAN in the pre-oxidation process. Meanwhile, the polar groups of oPAN and 3D fibrous network enhanced the PI/oPAN separator’s ionic conductivity and Li+ transference number, rendering the corresponding cell with more stable cycling performance than cells assembled with pure PI, PAN or commercial PP separator. Therefore, this work might provide a new avenue for the ongoing design and further development of LIB separators capable of high safety and high performance.

用于高性能锂离子电池的 PI 和预氧化 PAN 纳米纤维随机交织的坚固复合隔膜
电纺纳米纤维分隔物虽然缺乏出色的机械强度,但却以孔隙率高、加工简便而受到广泛关注。在此,我们利用聚酰胺(PAA)转化为聚酰亚胺(PI)的热亚胺化温度与聚丙烯腈(PAN)转化为碳纤维的预氧化温度相吻合这一事实,提出了一种新的交叉电纺策略,通过将 PAA 和 PAN 同步电纺到同一集电体上,然后在 300 °C 下热处理 2 小时,获得由 PI 和预氧化 PAN(oPAN)纳米纤维随机交织而成的复合纳米纤维分离器(PI/oPAN)。由此制得的 PI/oPAN 分离器能够保持 PI 纳米纤维膜的高孔隙率(71.7%)、电解质润湿性和热稳定性,并出人意料地表现出较高的机械强度,是 PI 的 3 倍,这主要是因为 PAN 在预氧化过程中熔化产生了大量的附着点。同时,oPAN 的极性基团和三维纤维网增强了 PI/oPAN 隔膜的离子传导性和 Li+ 传递数,使相应的电池比纯 PI、PAN 或商用 PP 隔膜组装的电池具有更稳定的循环性能。因此,这项工作可能会为正在进行的高安全性和高性能锂离子电池隔膜的设计和进一步开发提供新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Polymer Science
Chinese Journal of Polymer Science 化学-高分子科学
CiteScore
7.10
自引率
11.60%
发文量
218
审稿时长
6.0 months
期刊介绍: Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信