{"title":"High Performance Microwave Absorption Material Based on Metal-Backboned Polymer","authors":"Jia-Ning Xu, Kai-Wen Zeng, Yi-Feng Zhang, Yi-Bei Yang, Zi-Wei Liu, Yue Liu, Jia-Jia Wang, Kai-Lin Zhang, Yan-Ru-Zhen Wu, Hao Sun, Hui-Sheng Peng","doi":"10.1007/s10118-024-3181-x","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-backboned polymers with anisotropy microstructures are promising for conductive, optoelectronic, and magnetic functional materials. However, the structure-property relationships governing the interplay between the chemical structure and electromagnetic property of the metal-backboned polymer have been rarely investigated. Here we report a carbon/nickel hybrid from metal-backboned polymer to serve as electromagnetic wave-absorbing materials, which exhibit high microwave absorption capacity and tunable absorption band. The presence of nickel backbones promote the generation of heterogeneous interfaces with carbon during calcination, thereby enhancing the wave-absorbing capacity of the carbon/nickel hybrid. The C/Ni hybrids show a minimal reflection loss of −49.1 dB at 13.04 GHz, and its frequency of the absorption band can be adjusted by controlling the thickness of the absorption layer.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 12","pages":"1881 - 1887"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3181-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Metal-backboned polymers with anisotropy microstructures are promising for conductive, optoelectronic, and magnetic functional materials. However, the structure-property relationships governing the interplay between the chemical structure and electromagnetic property of the metal-backboned polymer have been rarely investigated. Here we report a carbon/nickel hybrid from metal-backboned polymer to serve as electromagnetic wave-absorbing materials, which exhibit high microwave absorption capacity and tunable absorption band. The presence of nickel backbones promote the generation of heterogeneous interfaces with carbon during calcination, thereby enhancing the wave-absorbing capacity of the carbon/nickel hybrid. The C/Ni hybrids show a minimal reflection loss of −49.1 dB at 13.04 GHz, and its frequency of the absorption band can be adjusted by controlling the thickness of the absorption layer.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.