O. S. Novitskaya, D. V. Lychagin, N. V. Semenchuk, O. V. Sizova, A. V. Filippov
{"title":"Deformation Behavior of Alloys Based on Iron and Manganese in Scratch, Tensile, and Indentation Tests","authors":"O. S. Novitskaya, D. V. Lychagin, N. V. Semenchuk, O. V. Sizova, A. V. Filippov","doi":"10.1007/s11182-024-03247-5","DOIUrl":null,"url":null,"abstract":"<p>Comprehensive mechanical testing of steels provides important information about the possibilities of their use under different processing and operating conditions. Comparison of test methods with each other, taking into account the development of plastic deformation and fracture analysis, is an urgent task for materials certification. The present work is devoted to the study of the characteristics of the response to deformation of high-manganese steels (13 and 22 wt.% Mn steels) in comparison with the behavior of high-entropy Cantor alloy during scratching, tensile, and microhardness tests. The plasticity of the materials and the nature of their destruction were assessed by the surface deformation relief and fractography. Analysis of the structure during scratch testing made it possible to assess the degree of plasticity of the materials and relate it to the results of tensile tests and the nature of destruction. The steel with 13 wt.% Mn (Hadfield steel) the destruction of which occurs by the quasi-viscous mechanism has the lowest ductility. The highest ductility has the Cantor alloy characterized by the viscous fracture mechanism. The Hadfield steel has the highest hardness of all materials studied, while the Cantor alloy has the least hardness. The research results lay the basis for the possibility of recalculating the mechanical characteristics from different tests, taking into account the implemented stress state scheme and processes of structural changes during deformation.</p>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"67 9","pages":"1294 - 1301"},"PeriodicalIF":0.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-024-03247-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Comprehensive mechanical testing of steels provides important information about the possibilities of their use under different processing and operating conditions. Comparison of test methods with each other, taking into account the development of plastic deformation and fracture analysis, is an urgent task for materials certification. The present work is devoted to the study of the characteristics of the response to deformation of high-manganese steels (13 and 22 wt.% Mn steels) in comparison with the behavior of high-entropy Cantor alloy during scratching, tensile, and microhardness tests. The plasticity of the materials and the nature of their destruction were assessed by the surface deformation relief and fractography. Analysis of the structure during scratch testing made it possible to assess the degree of plasticity of the materials and relate it to the results of tensile tests and the nature of destruction. The steel with 13 wt.% Mn (Hadfield steel) the destruction of which occurs by the quasi-viscous mechanism has the lowest ductility. The highest ductility has the Cantor alloy characterized by the viscous fracture mechanism. The Hadfield steel has the highest hardness of all materials studied, while the Cantor alloy has the least hardness. The research results lay the basis for the possibility of recalculating the mechanical characteristics from different tests, taking into account the implemented stress state scheme and processes of structural changes during deformation.
期刊介绍:
Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.