Melissa K. Stanfield, Claudia A. Weerts, Mahesh Prasad Timilsina, Jason Smith, Stuart C. Thickett
{"title":"Bioderived Thiol–Ene Emulsion Polymerization for Hybrid Latex Particles","authors":"Melissa K. Stanfield, Claudia A. Weerts, Mahesh Prasad Timilsina, Jason Smith, Stuart C. Thickett","doi":"10.1021/acs.biomac.4c00742","DOIUrl":null,"url":null,"abstract":"The thiol–ene emulsion polymerization of three dienes synthesized from bioderived compounds, and subsequent preparation of core–shell polymer latexes, is reported. Levoglucosan (LGA), levogucosenone (LGO) and isosorbide were first modified with 4-pentenoic acid to install polymerizable groups. These monomers were used along with a dithiol to prepare poly(thioether) particles via <i>ab initio</i> emulsion polymerization using potassium persulfate as initiator and sodium dodecyl sulfate as surfactant. The structure of the diene significantly influenced the size of the resulting polymer latex particles. Given their low glass transition temperature, the LGA-derived poly(thioether) particles were used as a seed for the seeded emulsion polymerization of either styrene or methyl methacrylate. Core–shell latex particles with a high <i>T</i><sub>g</sub> core and a low <i>T</i><sub>g</sub> bioderived shell were formed, as verified by electron microscopy and in agreement with theoretical predictions of the equilibrium particle morphology based on the interfacial tensions of each particle phase.","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00742","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The thiol–ene emulsion polymerization of three dienes synthesized from bioderived compounds, and subsequent preparation of core–shell polymer latexes, is reported. Levoglucosan (LGA), levogucosenone (LGO) and isosorbide were first modified with 4-pentenoic acid to install polymerizable groups. These monomers were used along with a dithiol to prepare poly(thioether) particles via ab initio emulsion polymerization using potassium persulfate as initiator and sodium dodecyl sulfate as surfactant. The structure of the diene significantly influenced the size of the resulting polymer latex particles. Given their low glass transition temperature, the LGA-derived poly(thioether) particles were used as a seed for the seeded emulsion polymerization of either styrene or methyl methacrylate. Core–shell latex particles with a high Tg core and a low Tg bioderived shell were formed, as verified by electron microscopy and in agreement with theoretical predictions of the equilibrium particle morphology based on the interfacial tensions of each particle phase.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.