Fabrication of protein–inorganic biohybrid as an imageable drug delivery system comprising transferrin, green fluorescent protein, and copper phosphate

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Seung Woo Lee, Yoojin Choi, Yeong Hyeock Kim, Jeong Eun Ham, Suresh Kumar Kailasa, Tae Jung Park
{"title":"Fabrication of protein–inorganic biohybrid as an imageable drug delivery system comprising transferrin, green fluorescent protein, and copper phosphate","authors":"Seung Woo Lee, Yoojin Choi, Yeong Hyeock Kim, Jeong Eun Ham, Suresh Kumar Kailasa, Tae Jung Park","doi":"10.1007/s12257-024-00148-9","DOIUrl":null,"url":null,"abstract":"<p>Organic–inorganic biohybrids have recently garnered attention for biomedical applications owing to their outstanding catalytic activity and biocompatibility. However, their efficacy in enhancing specificity toward drug targets remains limited. Here, we developed a transferrin–doxorubicin (TRF–DOX) complex and green fluorescence protein (GFP)-conjugated copper (Cu) phosphate (TRF–DOX@GFP@Cu biohybrid) for use as an imageable drug delivery system (DDS). TRF was utilized to increase the affinity of drug carriers for TRF receptors on cancer cells, and DOX was selected as a model drug. Additionally, GFP provides fluorescence properties for bioimaging and Cu ions serve as the skeleton for forming the flower-shaped inorganic material. By adjusting the concentrations of TRF–DOX and GFP with 25 mg mL<sup>−1</sup> of Cu precursors, six flower-shaped TRF–DOX@GFP@Cu biohybrids were fabricated. Among these, biohybrid-5 (prepared using 0.05 mg mL<sup>−1</sup> TRF–DOX and 0.10 mg mL<sup>−1</sup> of GFP with 25 mg mL<sup>−1</sup> of Cu ions) exhibited the strongest fluorescence. We characterized the morphology, composition, functional groups, and specific surface area of the TRF–DOX@GFP@Cu biohybrid. Biohybrid-5 had a specific surface area of 37.508 m<sup>2</sup> g<sup>−1</sup> and could effectively bind to A549 lung cancer cells as shown by fluorescence imaging. The novel TRF–DOX@GFP@Cu biohybrid fabricated in this study has potential as a DDS in the treatment of lung cancer.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioprocess Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12257-024-00148-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Organic–inorganic biohybrids have recently garnered attention for biomedical applications owing to their outstanding catalytic activity and biocompatibility. However, their efficacy in enhancing specificity toward drug targets remains limited. Here, we developed a transferrin–doxorubicin (TRF–DOX) complex and green fluorescence protein (GFP)-conjugated copper (Cu) phosphate (TRF–DOX@GFP@Cu biohybrid) for use as an imageable drug delivery system (DDS). TRF was utilized to increase the affinity of drug carriers for TRF receptors on cancer cells, and DOX was selected as a model drug. Additionally, GFP provides fluorescence properties for bioimaging and Cu ions serve as the skeleton for forming the flower-shaped inorganic material. By adjusting the concentrations of TRF–DOX and GFP with 25 mg mL−1 of Cu precursors, six flower-shaped TRF–DOX@GFP@Cu biohybrids were fabricated. Among these, biohybrid-5 (prepared using 0.05 mg mL−1 TRF–DOX and 0.10 mg mL−1 of GFP with 25 mg mL−1 of Cu ions) exhibited the strongest fluorescence. We characterized the morphology, composition, functional groups, and specific surface area of the TRF–DOX@GFP@Cu biohybrid. Biohybrid-5 had a specific surface area of 37.508 m2 g−1 and could effectively bind to A549 lung cancer cells as shown by fluorescence imaging. The novel TRF–DOX@GFP@Cu biohybrid fabricated in this study has potential as a DDS in the treatment of lung cancer.

Abstract Image

制作蛋白质-无机生物杂化物,作为由转铁蛋白、绿色荧光蛋白和磷酸铜组成的可成像给药系统
有机-无机生物混合物因其出色的催化活性和生物兼容性,最近在生物医学应用领域备受关注。然而,它们在提高药物靶点特异性方面的功效仍然有限。在这里,我们开发了一种转铁蛋白-多柔比星(TRF-DOX)复合物和绿色荧光蛋白(GFP)共轭磷酸铜(Cu)(TRF-DOX@GFP@Cu 生物杂交),用作可成像给药系统(DDS)。利用 TRF 增加药物载体对癌细胞上 TRF 受体的亲和力,并选择 DOX 作为模型药物。此外,GFP 为生物成像提供了荧光特性,而铜离子则是形成花朵状无机材料的骨架。通过调整 TRF-DOX 和 GFP 与 25 mg mL-1 铜前体的浓度,制备出六种花形 TRF-DOX@GFP@Cu 生物混合物。其中,生物杂交-5(使用 0.05 mg mL-1 TRF-DOX 和 0.10 mg mL-1 GFP 以及 25 mg mL-1 Cu 离子制备)的荧光最强。我们对 TRF-DOX@GFP@Cu 生物杂交体的形态、组成、功能基团和比表面积进行了表征。生物杂交体-5 的比表面积为 37.508 m2 g-1,荧光成像显示它能有效地与 A549 肺癌细胞结合。本研究制备的新型 TRF-DOX@GFP@Cu 生物杂交体具有作为 DDS 治疗肺癌的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology and Bioprocess Engineering
Biotechnology and Bioprocess Engineering 工程技术-生物工程与应用微生物
CiteScore
5.00
自引率
12.50%
发文量
79
审稿时长
3 months
期刊介绍: Biotechnology and Bioprocess Engineering is an international bimonthly journal published by the Korean Society for Biotechnology and Bioengineering. BBE is devoted to the advancement in science and technology in the wide area of biotechnology, bioengineering, and (bio)medical engineering. This includes but is not limited to applied molecular and cell biology, engineered biocatalysis and biotransformation, metabolic engineering and systems biology, bioseparation and bioprocess engineering, cell culture technology, environmental and food biotechnology, pharmaceutics and biopharmaceutics, biomaterials engineering, nanobiotechnology, and biosensor and bioelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信