K. Demin, E. Prazdnova, M. Kulikov, M. Mazanko, A. Gorovtsov
{"title":"Alternative agar substitutes for culturing unculturable microorganisms","authors":"K. Demin, E. Prazdnova, M. Kulikov, M. Mazanko, A. Gorovtsov","doi":"10.1007/s00203-024-04139-5","DOIUrl":null,"url":null,"abstract":"<div><p>Gelling agents are necessary for the preparation of solid or semisolid media. For more than a hundred years, agar has been the primary gelling agent. However, a substantial body of evidence has accumulated suggesting that agar-based media inhibit the growth of many microbial species through the generation of reactive oxygen species (ROS), toxic organic contaminants, or competitive exclusion effects. In this review we have compiled the largest amount of data to date on the use of various gelling agents in microbial isolation and cultivation, with the particular emphasis on rare microbe isolation cases. Our analysis suggested that microbial-derived compounds (especially gellan gum), as gelling agents, are superior to agar in their ability to isolate and maintain either new or known microbial species. We analyzed the reasons behind this success and concluded that there are phylum-level differences in microbial responses to the changes in conditions from natural to the laboratory conditions (with respect to gelling agent usage). Consequently, we hypothesize that at least partial success of microbial-derived gelling agents lies in the recreation of the natural microenvironment conditions (which we address as the “familiarity of conditions” hypothesis). Finally, we present a list of recommendations and suggestions for further microbial ecology studies.</p></div>","PeriodicalId":8279,"journal":{"name":"Archives of Microbiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00203-024-04139-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Gelling agents are necessary for the preparation of solid or semisolid media. For more than a hundred years, agar has been the primary gelling agent. However, a substantial body of evidence has accumulated suggesting that agar-based media inhibit the growth of many microbial species through the generation of reactive oxygen species (ROS), toxic organic contaminants, or competitive exclusion effects. In this review we have compiled the largest amount of data to date on the use of various gelling agents in microbial isolation and cultivation, with the particular emphasis on rare microbe isolation cases. Our analysis suggested that microbial-derived compounds (especially gellan gum), as gelling agents, are superior to agar in their ability to isolate and maintain either new or known microbial species. We analyzed the reasons behind this success and concluded that there are phylum-level differences in microbial responses to the changes in conditions from natural to the laboratory conditions (with respect to gelling agent usage). Consequently, we hypothesize that at least partial success of microbial-derived gelling agents lies in the recreation of the natural microenvironment conditions (which we address as the “familiarity of conditions” hypothesis). Finally, we present a list of recommendations and suggestions for further microbial ecology studies.
期刊介绍:
Research papers must make a significant and original contribution to
microbiology and be of interest to a broad readership. The results of any
experimental approach that meets these objectives are welcome, particularly
biochemical, molecular genetic, physiological, and/or physical investigations into
microbial cells and their interactions with their environments, including their eukaryotic hosts.
Mini-reviews in areas of special topical interest and papers on medical microbiology, ecology and systematics, including description of novel taxa, are also published.
Theoretical papers and those that report on the analysis or ''mining'' of data are
acceptable in principle if new information, interpretations, or hypotheses
emerge.