Quan Qin, Gui-Xiang Liu, Ji-Chong Wu, Wei-Xing Sun, Shuangquan Liao
{"title":"Influence of 1,1′-Azobis(cyclohexanezonitrile) on the thermo-oxidative aging performance of diolefin elastomers","authors":"Quan Qin, Gui-Xiang Liu, Ji-Chong Wu, Wei-Xing Sun, Shuangquan Liao","doi":"10.1515/epoly-2024-0058","DOIUrl":null,"url":null,"abstract":"Diolefin elastomers play an important role in production and life, but their unsaturated structure leads to extreme vulnerability to heat and oxygen attack, so research into the aging of diolefin elastomers has been a hot spot in the industry. To overcome this limitation, a strategy based on the thermal decomposition of 1,1′-Azobis(cyclohexanezonitrile) (Azo) is devised, which forms stabilized compounds with imine groups during the heat process and captures radical. The diolefin elastomer was combined with azo, and isoprene rubber (IR) is chosen as a model material. Azo was added to IR to prepare the composite material (IR-Azo), and the thermo-oxidative resistance of the composite was significantly improved. Such as, after being exposed to thermo-oxidative conditions for 24 h, IR-Azo showed a tensile strength of 14.96 MPa with a retention rate of 68.25% which exceeded that of many traditional antioxidants. This study provides new insights into the development of elastomers with excellent thermo-oxidative resistance.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":"19 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2024-0058","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Diolefin elastomers play an important role in production and life, but their unsaturated structure leads to extreme vulnerability to heat and oxygen attack, so research into the aging of diolefin elastomers has been a hot spot in the industry. To overcome this limitation, a strategy based on the thermal decomposition of 1,1′-Azobis(cyclohexanezonitrile) (Azo) is devised, which forms stabilized compounds with imine groups during the heat process and captures radical. The diolefin elastomer was combined with azo, and isoprene rubber (IR) is chosen as a model material. Azo was added to IR to prepare the composite material (IR-Azo), and the thermo-oxidative resistance of the composite was significantly improved. Such as, after being exposed to thermo-oxidative conditions for 24 h, IR-Azo showed a tensile strength of 14.96 MPa with a retention rate of 68.25% which exceeded that of many traditional antioxidants. This study provides new insights into the development of elastomers with excellent thermo-oxidative resistance.
期刊介绍:
e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome.
The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.