Sunlight-driven charge separation for a heterojunction of nano-pyramidal CuWO4-MOF modified TiO2 nanoflakes for photocatalytic degradation of ciprofloxacin

IF 2.2 4区 化学 Q2 Engineering
Kgaugelo S. Mabape, Shivani B. Mishra, Ajay K. Mishra, Makwena J. Moloto
{"title":"Sunlight-driven charge separation for a heterojunction of nano-pyramidal CuWO4-MOF modified TiO2 nanoflakes for photocatalytic degradation of ciprofloxacin","authors":"Kgaugelo S. Mabape,&nbsp;Shivani B. Mishra,&nbsp;Ajay K. Mishra,&nbsp;Makwena J. Moloto","doi":"10.1007/s11696-024-03686-x","DOIUrl":null,"url":null,"abstract":"<div><p>The study presents a breakthrough of a balanced charge separation for heterojunction CuWO<sub>4</sub>-TiO<sub>2</sub> cocatalyst to efficiently enhance visible light photocatalytic degradation of ciprofloxacin (CIP). A solvothermal-synthesized nanopyramid-like CuWO<sub>4</sub> semiconductor was assembled before sol–gel treatment with TiO<sub>2</sub> precursors to generate CuWO<sub>4</sub>-TiO<sub>2</sub> nanocomposites. The optical, structural, and morphological properties of CuWO<sub>4</sub>-TiO<sub>2</sub> were elucidated using UV–Vis DRS, XRD, FTIR, Raman spectroscopy, and TEM/SEM techniques. The UV–Vis DRS spectroscopy of as-synthesized CuWO<sub>4</sub>-TiO<sub>2</sub> cocatalyst demonstrated enhanced visible light absorbance. The XRD patterns of CuWO<sub>4</sub>-TiO<sub>2</sub> revealed a triclinic phase nanocrystal. The O-Ti–O functionality was confirmed by FTIR spectroscopy. The photoactive bands corresponding to anatase redshift were observed from Raman spectroscopy of CuWO<sub>4</sub>-TiO<sub>2</sub> nanocomposite. The PL studies attributed this redshift to the elevated extra energy bands that aid electron/hole pair charge separation in a co-catalyst heterojunction CuWO<sub>4</sub>-TiO<sub>2</sub> nanocomposite afforded by embedding CuWO<sub>4</sub>-MOF within TiO<sub>2</sub> crystalline. The TEM showed that un-sintered CuWO<sub>4</sub>.MOF mimicked a pyramidal shape and converted to nanoflakes upon sintering, while TiO<sub>2</sub> and CuWO<sub>4</sub>-TiO<sub>2</sub> retained a tetragonal shape. The photocatalytic activity of CuWO<sub>4</sub>-TiO<sub>2</sub> cocatalyst was studied using CIP, as a model pollutant. The innovative design of 5CuWO<sub>4</sub>-TiO<sub>2</sub> charge separation nanocomposite completely degraded 10 mg L<sup>−1</sup> CIP solution at pH = 6.31 (natural pH) and 9 under 120 min of sunlight irradiation.</p></div>","PeriodicalId":513,"journal":{"name":"Chemical Papers","volume":"78 15","pages":"8417 - 8432"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11696-024-03686-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Papers","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11696-024-03686-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The study presents a breakthrough of a balanced charge separation for heterojunction CuWO4-TiO2 cocatalyst to efficiently enhance visible light photocatalytic degradation of ciprofloxacin (CIP). A solvothermal-synthesized nanopyramid-like CuWO4 semiconductor was assembled before sol–gel treatment with TiO2 precursors to generate CuWO4-TiO2 nanocomposites. The optical, structural, and morphological properties of CuWO4-TiO2 were elucidated using UV–Vis DRS, XRD, FTIR, Raman spectroscopy, and TEM/SEM techniques. The UV–Vis DRS spectroscopy of as-synthesized CuWO4-TiO2 cocatalyst demonstrated enhanced visible light absorbance. The XRD patterns of CuWO4-TiO2 revealed a triclinic phase nanocrystal. The O-Ti–O functionality was confirmed by FTIR spectroscopy. The photoactive bands corresponding to anatase redshift were observed from Raman spectroscopy of CuWO4-TiO2 nanocomposite. The PL studies attributed this redshift to the elevated extra energy bands that aid electron/hole pair charge separation in a co-catalyst heterojunction CuWO4-TiO2 nanocomposite afforded by embedding CuWO4-MOF within TiO2 crystalline. The TEM showed that un-sintered CuWO4.MOF mimicked a pyramidal shape and converted to nanoflakes upon sintering, while TiO2 and CuWO4-TiO2 retained a tetragonal shape. The photocatalytic activity of CuWO4-TiO2 cocatalyst was studied using CIP, as a model pollutant. The innovative design of 5CuWO4-TiO2 charge separation nanocomposite completely degraded 10 mg L−1 CIP solution at pH = 6.31 (natural pH) and 9 under 120 min of sunlight irradiation.

Abstract Image

用于光催化降解环丙沙星的纳米金字塔形 CuWO4-MOF 修饰 TiO2 纳米薄片异质结的阳光驱动电荷分离技术
该研究突破性地提出了异质结 CuWO4-TiO2 催化剂的平衡电荷分离技术,可有效提高环丙沙星(CIP)的可见光光催化降解能力。在溶胶-凝胶处理 TiO2 前体之前,先将溶胶热合成的纳米金字塔状 CuWO4 半导体组装在一起,生成 CuWO4-TiO2 纳米复合材料。利用紫外可见 DRS、XRD、傅里叶变换红外光谱、拉曼光谱和 TEM/SEM 技术阐明了 CuWO4-TiO2 的光学、结构和形貌特性。合成的 CuWO4-TiO2 催化剂的紫外可见 DRS 光谱显示出更强的可见光吸收率。CuWO4-TiO2 的 XRD 图谱显示其为三菱相纳米晶体。傅立叶变换红外光谱证实了 O-Ti-O 的功能性。从 CuWO4-TiO2 纳米复合材料的拉曼光谱中观察到与锐钛矿红移相对应的光活性带。聚光研究将这种红移归因于共催化剂异质结 CuWO4-TiO2 纳米复合材料中有助于电子/空穴对电荷分离的额外能带的升高。TEM显示,未烧结的CuWO4.MOF呈金字塔形,烧结后转变为纳米片状,而TiO2和CuWO4-TiO2则保持四方形状。以 CIP 为模型污染物,研究了 CuWO4-TiO2 催化剂的光催化活性。创新设计的 5CuWO4-TiO2 电荷分离纳米复合材料可在 pH = 6.31(自然 pH 值)和 9 的条件下,在 120 分钟的阳光照射下完全降解 10 mg L-1 的 CIP 溶液。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Papers
Chemical Papers Chemical Engineering-General Chemical Engineering
CiteScore
3.30
自引率
4.50%
发文量
590
期刊介绍: Chemical Papers is a peer-reviewed, international journal devoted to basic and applied chemical research. It has a broad scope covering the chemical sciences, but favors interdisciplinary research and studies that bring chemistry together with other disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信